Difference between revisions of "Theory of Stochastic Signals/Linear Combinations of Random Variables"

From LNTwww
Line 20: Line 20:
 
==Resulting correlation coefficient==
 
==Resulting correlation coefficient==
 
<br>
 
<br>
ResuLet us now consider the&nbsp; '''variances'''&nbsp; of the random variables according to the linear combinations.  
+
Let us now consider the&nbsp; '''variances'''&nbsp; of the random variables according to the linear combinations.  
 
*For the random variable&nbsp; $x$&nbsp; holds independently of the parameter&nbsp; $C$:
 
*For the random variable&nbsp; $x$&nbsp; holds independently of the parameter&nbsp; $C$:
 
:$$\sigma _x ^2 = {\rm E}\big[x ^{\rm 2}\big] = A^{\rm 2} \cdot {\rm E}\big[u^{\rm 2}\big] + B^{\rm 2} \cdot {\rm E}\big[v^{\rm 2}\big] + {\rm 2} \cdot A \cdot B \cdot {\rm E}\big[u \cdot v\big].$$
 
:$$\sigma _x ^2 = {\rm E}\big[x ^{\rm 2}\big] = A^{\rm 2} \cdot {\rm E}\big[u^{\rm 2}\big] + B^{\rm 2} \cdot {\rm E}\big[v^{\rm 2}\big] + {\rm 2} \cdot A \cdot B \cdot {\rm E}\big[u \cdot v\big].$$
Line 64: Line 64:
 
*For different signs, the correlation coefficient is&nbsp; $-1$.  
 
*For different signs, the correlation coefficient is&nbsp; $-1$.  
 
*Also, for &nbsp;$A = D = 0$&nbsp; the coefficient&nbsp; $ρ_{xy} = ±1$ if&nbsp; $B \ne 0$&nbsp; and&nbsp; $E \ne 0$&nbsp; holds. }}
 
*Also, for &nbsp;$A = D = 0$&nbsp; the coefficient&nbsp; $ρ_{xy} = ±1$ if&nbsp; $B \ne 0$&nbsp; and&nbsp; $E \ne 0$&nbsp; holds. }}
==Erzeugung korrelierter Zufallsgrößen==
+
==Generation of correlated random variables==
 
<br>
 
<br>
Die&nbsp; [[Theory_of_Stochastic_Signals/Linearkombinationen_von_Zufallsgrößen#Resultierender_Korrelationskoeffizient|Gleichungen der letzten Seite]]&nbsp; können zur Erzeugung einer zweidimensionalen Zufallsgröße&nbsp; $(x, y)$&nbsp; mit vorgegebenen Kenngrößen&nbsp; $σ_x$,&nbsp; $σ_y$&nbsp; und&nbsp; $ρ_{xy}$&nbsp; genutzt werden.  
+
The&nbsp; [[Theory_of_Stochastic_Signals/Linear_Combinations_of_Random_Variables#Resulting_correlation_coefficient|previously used equations]]&nbsp; can be used to generate a two-dimensional random variable&nbsp; $(x, y)$&nbsp; with given characteristics&nbsp; $σ_x$,&nbsp; $σ_y$&nbsp; and&nbsp; $ρ_{xy}$&nbsp; .  
  
*Werden außer diesen drei Sollwerten keine weiteren Voraussetzungen getroffen, so ist einer der vier Koeffizienten&nbsp; $A, \ B, \ D$&nbsp; und&nbsp; $E$&nbsp; frei wählbar.  
+
*If no further preconditions are met other than these three nominal values, one of the four coefficients&nbsp; $A, \ B, \ D$&nbsp; and&nbsp; $E$&nbsp; is arbitrary.  
*Im Folgenden wird stets willkürlich&nbsp; $E = 0$&nbsp; gesetzt.  
+
*In the following, we always arbitrarily set&nbsp; $E = 0$&nbsp;.  
*Mit der weiteren Festlegung, dass die statistisch unabhängigen Zufallsgrößen&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; jeweils die Streuung&nbsp; $σ =1$&nbsp; aufweisen, erhält man:  
+
*With the further specification that the statistically independent random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; each have standard deviation&nbsp; $σ =1$&nbsp; we obtain:  
 
:$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
 
:$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
*Bei&nbsp; $σ ≠ 1$&nbsp; sind diese Werte jeweils noch durch&nbsp; $σ$&nbsp; zu dividieren.  
+
*For&nbsp; $σ ≠ 1$&nbsp; these values must still be divided by&nbsp; $σ$&nbsp; in each case.  
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
Wir gehen stets von mittelwertfreien Gaußschen Zufallsgrößen&nbsp; $u$&nbsp; und&nbsp; $v$&nbsp; aus.&nbsp; Beide besitzen die Varianz&nbsp; $σ^2 = 1$.
+
We always assume zero mean Gaussian random variables&nbsp; $u$&nbsp; and&nbsp; $v$&nbsp; Both have variance&nbsp; $σ^2 = 1$.
  
$(1)$ &nbsp; Zur Erzeugung einer 2D–Zufallsgröße mit den gewünschten Kennwerten&nbsp; $σ_x =1$,&nbsp; $σ_y = 1.55$&nbsp; und&nbsp; $ρ_{xy} = -0.8$&nbsp; eignet sich zum Beispiel der Parametersatz
+
$(1)$ &nbsp; To generate a 2D random variable with the desired characteristics&nbsp; $σ_x =1$,&nbsp; $σ_y = 1.55$&nbsp; and&nbsp; $ρ_{xy} = -0.8$&nbsp; the parameter set is suitable, for example.
[[File:P_ID419__Sto_T_4_3_S3_neu.png|right |frame| Per Linearkombination erzeugte 2D-Zufallsgrößen]]
+
[[File:P_ID419__Sto_T_4_3_S3_neu.png|right |frame| 2D random variables generated by linear combination]]
:$$A = -0.8, \; B = 0.6, \; D = 1.55, \; E = 0.$$  
+
:$$A = -0.8, \; B = 0.6, \; D = 1.55, \; E = 0.$$  
*Dieser Parametersatz liegt der linken Grafik zugrunde.   
+
*This set of parameters underlies the left graph.   
*Die Korrelationsgerade&nbsp; $K(x)$&nbsp; ist rot dargestellt.  
+
*The regression line&nbsp; $K(x)$&nbsp; is shown in red.  
*Sie verläuft unter einem Winkel von etwa&nbsp; $-50^\circ$.  
+
*It runs at an angle of about&nbsp; $-50^\circ$.  
*Violett eingezeichnet ist die Ellipsenhauptachse, die etwas oberhalb der Korrelationsgeraden liegt.  
+
*Drawn in purple is the ellipse major axis, which lies slightly above the regression line.  
  
  
  
$(2)$ &nbsp; Der Parametersatz für die rechte Grafik lautet:  
+
$(2)$ &nbsp; The parameter set for the right graph is:  
:$$A = -0.625,\; B = 0.781,\; D = 1.501,\; E = -0.390.$$
+
:$$A = -0.625,\; B = 0.781,\; D = 1.501,\; E = -0.390.$$
*Im statistischen Sinne erhält man das gleiche Resultat, auch wenn sich die beiden Punktwolken im Detail unterscheiden.
+
*In a statistical sense, the same result is obtained even though the two point clouds differ in detail.
*Insbesondere ergibt sich bezüglich Korrelationsgerade und Ellipsenhauptachse kein Unterschied zum Parametersatz&nbsp; $(1)$.  }}
+
*In particular, with respect to regression line and ellipse major axis, there is no difference with respect to the parameter set&nbsp; $(1)$.  }}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.7 Gewichtete Summe und Differenz|Aufgabe 4.7: Gewichtete Summe und Differenz]]
+
[[Aufgaben:Exercise_4.7:_Weighted_Sum_and_Difference|Exercise 4.7: Weighted Sum and Difference]]
  
[[Aufgaben:4.7Z Erzeugung einer 2D–WDF|Aufgabe 4.7Z: Erzeugung einer 2D–WDF]]
+
[[Aufgaben:Exercise_4.7Z:_Generation_of_a_"2D-PDF"|Exercise 4.7Z: Generation of a "2D-PDF"]]
  
[[Aufgaben:4.8 Rautenförmige 2D-WDF|Aufgabe 4.8: Rautenförmige 2D-WDF]]
+
[[Aufgaben:Exercise_4.8:_Diamond_shaped_"2D-PDF"|Exercise 4.8: Diamond shaped "2D-PDF"]]
  
[[Aufgaben:4.8Z AWGN-Kanal|Aufgabe 4.8Z: AWGN-Kanal]]
+
[[Aufgaben:Exercise_4.8Z:_AWGN_Channel|Exercise 4.8Z: AWGN Channel]]
  
  
 
{{Display}}
 
{{Display}}

Revision as of 23:15, 17 February 2022

Prerequisites and mean values


Throughout the chapter "Linear Combinations of Random Variables" we make the following assumptions:

  • The random variables  $u$  and  $v$  are zero mean each   ⇒   $m_u = m_v = 0$  and also statistically independent of each other   ⇒   $ρ_{uv} = 0$.
  • The two random variables  $u$  and  $v$  each have equal standard deviation  $σ$.  No statement is made about the nature of the distribution.
  • Let the two random variables  $x$  and  $y$  be linear combinations of  $u$  and  $v$, where:
$$x=A \cdot u + B \cdot v + C,$$
$$y=D \cdot u + E \cdot v + F.$$

Thus, for the (linear) mean values of the new random variables  $x$  and  $y$  we obtain according to the general rules of calculation for expected values:

$$m_x =A \cdot m_u + B \cdot m_v + C =C,$$
$$m_y =D \cdot m_u + E \cdot m_v + F =F.$$

Thus, the coefficients  $C$  and  $F$  give only the mean values of  $x$  and  $y$  Both are always set to zero in the following pages.

Resulting correlation coefficient


Let us now consider the  variances  of the random variables according to the linear combinations.

  • For the random variable  $x$  holds independently of the parameter  $C$:
$$\sigma _x ^2 = {\rm E}\big[x ^{\rm 2}\big] = A^{\rm 2} \cdot {\rm E}\big[u^{\rm 2}\big] + B^{\rm 2} \cdot {\rm E}\big[v^{\rm 2}\big] + {\rm 2} \cdot A \cdot B \cdot {\rm E}\big[u \cdot v\big].$$
  • The expected values of  $u^2$  and  $v^2$  are by definition equal to  $σ^2$, respectively, because  $u$  and  $v$  are zero mean.
  • Since  $u$  and  $v$  are moreover assumed to be statistically independent, one can also write for the expected value of the product:
$${\rm E}\big[u \cdot v\big] = {\rm E}\big[u\big] \cdot {\rm E}\big[v\big] = m_u \cdot m_v = \rm 0.$$
  • Thus, for the variances of the random variables formed by linear combinations, we obtain:
$$\sigma _x ^2 =(A^2 + B^2) \cdot \sigma ^2,$$
$$\sigma _y ^2 =(D^2 + E^2) \cdot \sigma ^2.$$

The  covariance  $μ_{xy}$  is identical to the joint moment  $m_{xy}$ for zero mean random variables  $x$  and  $y$   ⇒   $C = F = 0$  :

$$\mu_{xy } = m_{xy } = {\rm E}\big[x \cdot y\big] = {\rm E}\big[(A \cdot u + B \cdot v)\cdot (D \cdot u + E \cdot v)\big].$$

Note here that  ${\rm E}\big[ \text{...} \big]$  denotes an expected value, while  $E$  describes a variable.

$\text{Conclusion:}$ After evaluating this equation in an analogous manner to above, it follows:

$$\mu_{xy } = (A \cdot D + B \cdot E) \cdot \sigma^{\rm 2 } \hspace{0.3cm}\rightarrow\hspace{0.3cm} \rho_{xy } = \frac{\rho_{xy } }{\sigma_x \cdot \sigma_y} = \frac {A \cdot D + B \cdot E}{\sqrt{(A^{\rm 2}+B^{\rm 2})(D^{\rm 2}+E^{\rm 2} ) } }. $$


We now exclude two special cases:

  • $A = B = 0$  ⇒   $x ≡ 0$  as well as.
  • $D = E = 0$  ⇒   $y ≡ 0$.


Then the above equation always yields unique values for the correlation coefficient in the range  $-1 ≤ ρ_{xy} ≤ +1$.

$\text{Example 1:}$  If we set  $A = E = 0$,  we get the correlation coefficient  $ρ_{xy} = 0$.  This result is insightful:

  • Now  $x$  depends only on  $v$  and  $y$  depends exclusively on  $u$  .
  • But since  $u$  and  $v$  were assumed to be statistically independent, there are also no relationships between  $x$  and  $y$.
  • Similarly,  $ρ_{xy} = 0$  results for the combination  $B = D = 0$.


$\text{Example 2:}$  The constellation  $B = E = 0$  leads to the fact that both  $x$  and  $y$  depend only on  $u$  Then the correlation coefficient is obtained:

$$\rho_{xy } = \frac {A \cdot D }{\sqrt{A^{\rm 2}\cdot D^{\rm 2} } } = \frac {A \cdot D }{\vert A\vert \cdot D\vert } =\pm 1. $$
  • If  $A$  and  $D$  have the same sign, then  $ρ_{xy} = +1$.
  • For different signs, the correlation coefficient is  $-1$.
  • Also, for  $A = D = 0$  the coefficient  $ρ_{xy} = ±1$ if  $B \ne 0$  and  $E \ne 0$  holds.

Generation of correlated random variables


The  previously used equations  can be used to generate a two-dimensional random variable  $(x, y)$  with given characteristics  $σ_x$,  $σ_y$  and  $ρ_{xy}$  .

  • If no further preconditions are met other than these three nominal values, one of the four coefficients  $A, \ B, \ D$  and  $E$  is arbitrary.
  • In the following, we always arbitrarily set  $E = 0$ .
  • With the further specification that the statistically independent random variables  $u$  and  $v$  each have standard deviation  $σ =1$  we obtain:
$$D = \sigma_y, \hspace{0.5cm} A = \sigma_x \cdot \rho_{xy}, \hspace{0.5cm} B = \sigma_x \cdot \sqrt {1-\rho_{xy}^2}.$$
  • For  $σ ≠ 1$  these values must still be divided by  $σ$  in each case.


$\text{Example 3:}$  We always assume zero mean Gaussian random variables  $u$  and  $v$  Both have variance  $σ^2 = 1$.

$(1)$   To generate a 2D random variable with the desired characteristics  $σ_x =1$,  $σ_y = 1.55$  and  $ρ_{xy} = -0.8$  the parameter set is suitable, for example.

2D random variables generated by linear combination
$$A = -0.8, \; B = 0.6, \; D = 1.55, \; E = 0.$$
  • This set of parameters underlies the left graph.
  • The regression line  $K(x)$  is shown in red.
  • It runs at an angle of about  $-50^\circ$.
  • Drawn in purple is the ellipse major axis, which lies slightly above the regression line.


$(2)$   The parameter set for the right graph is:

$$A = -0.625,\; B = 0.781,\; D = 1.501,\; E = -0.390.$$
  • In a statistical sense, the same result is obtained even though the two point clouds differ in detail.
  • In particular, with respect to regression line and ellipse major axis, there is no difference with respect to the parameter set  $(1)$.

Exercises for the chapter


Exercise 4.7: Weighted Sum and Difference

Exercise 4.7Z: Generation of a "2D-PDF"

Exercise 4.8: Diamond shaped "2D-PDF"

Exercise 4.8Z: AWGN Channel