Difference between revisions of "Aufgaben:Exercise 4.10Z: Correlation Duration"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/*Autokorrelationsfunktion (AKF)*
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID393__Sto_Z_4_10.png|right|frame|Musterfunktionen ergodischer Prozesse]]
+
[[File:P_ID393__Sto_Z_4_10.png|right|frame|Sample functions of ergodic processes]]
Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse  $\{x_i(t)\}$  und  $\{y_i(t)\}$  mit jeweils gleicher Leistung  $P_x = P_y = 5\hspace{0.05 cm} \rm mW$.  Vorausgesetzt ist hierbei der Widerstand  $R = 50\hspace{0.05 cm}\rm \Omega$.  
+
The adjacent image shows pattern signals of two random processes  $\{x_i(t)\}$  and  $\{y_i(t)\}$  each with equal power  $P_x = P_y = 5\hspace{0.05 cm} \rm mW$.  Assuming here the resistance  $R = 50\hspace{0.05 cm}\rm \Omega$.  
  
  
Der Zufallsprozess  $\{x_i(t)\}$
+
The random process  $\{x_i(t)\}$
* ist mittelwertfrei  $(m_x = 0)$,
+
* is zero mean  $(m_x = 0)$,
* besitzt die gaußförmige AKF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  und
+
* has the Gaussian ACF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  and
* weist die äquivalente AKF-Dauer  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $  auf.
+
* exhibits the equivalent ACF duration  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $ .
  
  
Wie aus dem unteren Bild zu erkennen ist, hat der Zufallsprozess  $\{y_i(t)\}$  sehr viel stärkere innere statistische Bindungen als der Zufallsprozess  $\{x_i(t)\}$.
 
  
Oder anders ausgedrückt:
 
*Der Zufallsprozess  $\{y_i(t)\}$   ist niederfrequenter als   $\{x_i(t)\}$.
 
*Die äquivalente AKF-Dauer ist  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
 
  
 +
As can be seen from the picture below, the random process  $\{y_i(t)\}$  has much stronger internal statistical bindings than the random process  $\{x_i(t)\}$.
 +
Or, to put it another way:
 +
*The random process  $\{y_i(t)\}$  is lower frequency than  $\{x_i(t)\}$.
 +
*The equivalent ACF duration is  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
  
Aus der Skizze ist auch zu erkennen, dass  $\{y_i(t)\}$  im Gegensatz zu  $\{x_i(t)\}$  nicht gleichsignalfrei ist.  Der Gleichsignalanteil beträgt vielmehr  $m_y = -0.3 \hspace{0.05 cm}\rm V$.
 
  
  
  
 +
From the sketch it can also be seen that  $\{y_i(t)\}$  in contrast to  $\{x_i(t)\}$  is not equal signal free.  The equal signal component is rather  $m_y = -0.3 \hspace{0.05 cm}\rm V$.
  
  
Line 29: Line 29:
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
+
 
*Bezug genommen wird insbesondere auf die Seite  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]].
+
 
 +
Hint:
 +
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 +
*Reference is made in particular to the page  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Interpretation_of_the_auto-correlation_function|Interpretation of the auto-correlation function]].
 
   
 
   
  
Line 37: Line 40:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Effektivwert&nbsp; $(\sigma_x)$&nbsp; besitzen die Mustersignale des Prozesses&nbsp; $\{x_i(t)\}$?
+
{What is the standard deviation&nbsp; $(\sigma_x)$&nbsp; of the pattern signals of the process&nbsp; $\{x_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_x \ = \ $ { 0.5 3% } $\ \rm V$
 
$\sigma_x \ = \ $ { 0.5 3% } $\ \rm V$
  
  
{Welche AKF&ndash;Werte ergeben sich f&uuml;r&nbsp; $\tau = 2\hspace{0.05 cm}\rm &micro;s$ &nbsp;bzw.&nbsp; $\tau = 5\hspace{0.05 cm}\rm &micro; s$?
+
{What ACF&ndash;values result f&uuml;r&nbsp; $\tau = 2\hspace{0.05 cm}\rm &micro;s$ &nbsp;resp.&nbsp; $\tau = 5\hspace{0.05 cm}\rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 3.025 3% } $\ \rm mW$
+
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 3.025 3% } $\ \rm mW$
$\varphi_x(\tau = 5\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 0.216 3% } $\ \rm mW$
+
$\varphi_x(\tau = 5\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 0.216 3% } $\ \rm mW$
  
  
{Wie gro&szlig; ist die Korrelationsdauer&nbsp; $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die H&auml;lfte des Maximums abgefallen ist?
+
{What is the correlation time&nbsp; $T_{\rm K}$, i.e. the time at which the ACF has dropped to half of the maximum?
 
|type="{}"}
 
|type="{}"}
$T_{\rm K}  \ = \ $ { 2.35 3% } $\ \rm &micro; s$
+
$T_{\rm K}  \ = \ $ { 2.35 3% } $\ \rm &micro; s$
  
  
{Welchen Effektivwert&nbsp; $(\sigma_y)$&nbsp; besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?
+
{What is the standard deviation&nbsp; $(\sigma_y)$&nbsp; of the pattern signals of the process $\{y_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
$\sigma_y \ = \ $ { 0.4 3% } $\ \rm V$
+
$\sigma_y \ = \ $ { 0.4 3% } $\ \rm V$
  
  
{Berechnen Sie die AKF&nbsp; $\varphi_x(\tau)$.&nbsp; Wie groß ist der AKF-Wert bei&nbsp; $\tau = 10\hspace{0.05 cm}\rm &micro; s$?&nbsp; Welcher AKF&ndash;Verlauf ergäbe sich bei positivem Mittelwert&nbsp; $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
+
{Calculate the ACF&nbsp; $\varphi_x(\tau)$.&nbsp; What is the ACF value at&nbsp; $\tau = 10\hspace{0.05 cm}\rm &micro; s$?&nbsp; What would be the ACF&ndash;curve with positive mean&nbsp; $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
 
|type="{}"}
 
|type="{}"}
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 1.938 3% } $\ \rm mW$
+
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s}) \ = \ $ { 1.938 3% } $\ \rm mW$
  
  
Line 69: Line 72:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der quadratische Mittelwert ergibt sich zu&nbsp; $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$  
+
'''(1)'''&nbsp; The quadratic mean results to&nbsp; $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$  
*Daraus folgt der Effektivwert&nbsp; $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
+
*From this follows the standard deviation&nbsp; $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
  
  
  
'''(2)'''&nbsp; Wegen&nbsp; $P_x = \varphi_x (\tau = 0)$&nbsp; gilt f&uuml;r die AKF allgemein:  
+
'''(2)'''&nbsp; Because&nbsp; $P_x = \varphi_x (\tau = 0)$&nbsp; holds for the ACF in general:  
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
*Daraus erh&auml;lt man:
+
*From this we obtain:
 
:$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
 
:$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
 
:$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
 
:$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
Line 84: Line 87:
  
  
[[File:P_ID394__Sto_Z_4_10_e.png|right|frame|Zweimal Gaußsche AKF]]
+
[[File:P_ID394__Sto_Z_4_10_e.png|right|frame|Two times Gaussian ACF]]
'''(3)'''&nbsp; Hier gilt folgende Bestimmungsgleichung:
+
'''(3)'''&nbsp; Here the following determination equation holds:
 
:$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
 
:$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
  
*Daraus folgt&nbsp; $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm &micro; s}}$.  
+
*From this follows&nbsp; $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm &micro; s}}$.  
*Bei anderer AKF-Form erhält man ein anderes Verhältnis für&nbsp; $T_{\rm K} / {\rm \nabla} \tau_x$.
+
*With other ACF form, a different ratio is obtained for&nbsp; $T_{\rm K} / {\rm \nabla} \tau_x$.
  
  
  
  
'''(4)'''&nbsp; Wegen&nbsp; $P_x = P_y$&nbsp; sind die quadratischen Mittelwerte von&nbsp; $x$&nbsp; und&nbsp; $y$&nbsp; gleich, und zwar jeweils&nbsp; $0.25\hspace{0.05 cm}\rm V^2$.  
+
'''(4)'''&nbsp; Because&nbsp; $P_x = P_y$&nbsp; the root mean square values of&nbsp; $x$&nbsp; and&nbsp; $y$&nbsp; are equal, respectively&nbsp; $0.25\hspace{0.05 cm}\rm V^2$.  
*Unter Ber&uuml;cksichtigung des Mittelwertes&nbsp; $m_y = -0.3 \hspace{0.05 cm}\rm V$&nbsp; gilt:
+
*Taking into account the mean value&nbsp; $m_y = -0.3 \hspace{0.05 cm}\rm V$&nbsp; holds:
 
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$  
 
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$  
*Daraus folgt:  
+
*From this follows:  
 
:$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$
 
:$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$
  
  
  
'''(5)'''&nbsp; Bezogen auf den Einheitswiderstand&nbsp; $ R = 1 \hspace{0.05 cm}{\rm \Omega}$&nbsp; lautet die AKF des Prozesses&nbsp; $\{y_i(t)\}$:
+
'''(5)'''&nbsp; In terms of unit resistance&nbsp; $ R = 1 \hspace{0.05 cm}{\rm \Omega}$&nbsp; the ASF of the process&nbsp; $\{y_i(t)\}$ is:
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  
*Rechts sehen Sie den Funktionsverlauf.&nbsp; Bezogen auf den Widerstand&nbsp; $ R = 50 \hspace{0.05 cm}{\rm \Omega}$&nbsp; ergeben sich die nachfolgend angegebenen AKF-Werte:
+
*On the right you can see the function progression.&nbsp; Related to the resistor&nbsp; $ R = 50 \hspace{0.05 cm}{\rm \Omega}$&nbsp; results in the following ACF values:
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  
*Daraus folgt:
+
*From this follows:
 
:$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})
 
:$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
+
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
  
*Bei positivem Mittelwert&nbsp; $m_y$&nbsp; (mit gleichem Betrag) w&uuml;rde sich an der AKF nichts &auml;ndern, da&nbsp; $m_y$&nbsp; in die AKF-Gleichung quadratisch eingeht.
+
*With positive mean&nbsp; $m_y$&nbsp; (having the same amplitude), there would be no change in the ASF, since&nbsp; $m_y$&nbsp; is squared in the ASF equation.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 00:08, 1 March 2022

Sample functions of ergodic processes

The adjacent image shows pattern signals of two random processes  $\{x_i(t)\}$  and  $\{y_i(t)\}$  each with equal power  $P_x = P_y = 5\hspace{0.05 cm} \rm mW$.  Assuming here the resistance  $R = 50\hspace{0.05 cm}\rm \Omega$.


The random process  $\{x_i(t)\}$

  • is zero mean  $(m_x = 0)$,
  • has the Gaussian ACF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  and
  • exhibits the equivalent ACF duration  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $ .



As can be seen from the picture below, the random process  $\{y_i(t)\}$  has much stronger internal statistical bindings than the random process  $\{x_i(t)\}$. Or, to put it another way:

  • The random process  $\{y_i(t)\}$  is lower frequency than  $\{x_i(t)\}$.
  • The equivalent ACF duration is  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.



From the sketch it can also be seen that  $\{y_i(t)\}$  in contrast to  $\{x_i(t)\}$  is not equal signal free.  The equal signal component is rather  $m_y = -0.3 \hspace{0.05 cm}\rm V$.





Hint:



Questions

1

What is the standard deviation  $(\sigma_x)$  of the pattern signals of the process  $\{x_i(t)\}$?

$\sigma_x \ = \ $

$\ \rm V$

2

What ACF–values result für  $\tau = 2\hspace{0.05 cm}\rm µs$  resp.  $\tau = 5\hspace{0.05 cm}\rm µ s$?

$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$
$\varphi_x(\tau = 5\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$

3

What is the correlation time  $T_{\rm K}$, i.e. the time at which the ACF has dropped to half of the maximum?

$T_{\rm K} \ = \ $

$\ \rm µ s$

4

What is the standard deviation  $(\sigma_y)$  of the pattern signals of the process $\{y_i(t)\}$?

$\sigma_y \ = \ $

$\ \rm V$

5

Calculate the ACF  $\varphi_x(\tau)$.  What is the ACF value at  $\tau = 10\hspace{0.05 cm}\rm µ s$?  What would be the ACF–curve with positive mean  $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?

$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$


Solution

(1)  The quadratic mean results to  $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$

  • From this follows the standard deviation  $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.


(2)  Because  $P_x = \varphi_x (\tau = 0)$  holds for the ACF in general:

$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
  • From this we obtain:
$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$


Two times Gaussian ACF

(3)  Here the following determination equation holds:

$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
  • From this follows  $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.
  • With other ACF form, a different ratio is obtained for  $T_{\rm K} / {\rm \nabla} \tau_x$.



(4)  Because  $P_x = P_y$  the root mean square values of  $x$  and  $y$  are equal, respectively  $0.25\hspace{0.05 cm}\rm V^2$.

  • Taking into account the mean value  $m_y = -0.3 \hspace{0.05 cm}\rm V$  holds:
$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$
  • From this follows:
$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$


(5)  In terms of unit resistance  $ R = 1 \hspace{0.05 cm}{\rm \Omega}$  the ASF of the process  $\{y_i(t)\}$ is:

$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  • On the right you can see the function progression.  Related to the resistor  $ R = 50 \hspace{0.05 cm}{\rm \Omega}$  results in the following ACF values:
$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  • From this follows:
$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
  • With positive mean  $m_y$  (having the same amplitude), there would be no change in the ASF, since  $m_y$  is squared in the ASF equation.