Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5Z: Phase Modulation of a Trapezoidal Signal"

From LNTwww
m
m
Line 64: Line 64:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Die Phasenfunktion berechnet sich zu  ϕ(t) = K_{\rm PM} · q_1(t).  Der Phasenhub  ϕ_{\rm max}  ist gleich der sich ergebenden Phase für den Maximalwert des Quellensignals:
+
'''(1)'''  The phase function is calculated as  ϕ(t) = K_{\rm PM} · q_1(t).  The phase deviation  ϕ_{\rm max} is equal to the phase resulting from the maximum value of the source signal:
 
: \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.
 
: \phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.
  
  
  
'''(2)'''&nbsp; Im Bereich&nbsp; 0 < t < T&nbsp; kann die Winkelfunktion wie folgt dargestellt werden:
+
'''(2)'''&nbsp; In the range&nbsp; 0 < t < T&nbsp;, the angular function can be represented as follows:
 
: \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.
 
: \psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.
*Für die Augenblickskreisfrequenz&nbsp; ω_{\rm A}(t)&nbsp; bzw. die Augenblicksfrequenz&nbsp; f_{\rm A}(t)&nbsp; gilt dann:
+
*The instantaneous angular frequency &nbsp; ω_{\rm A}(t)&nbsp; or the instantaneous frequency &nbsp; f_{\rm A}(t)&nbsp; the following holds:
 
:\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm &micro; s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm  V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.
 
:\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm &micro; s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm  V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.
*Die Augenblicksfrequenz ist konstant, so dass&nbsp; f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}&nbsp; gilt.
+
*The instantaneous frequency is constant, sonbsp; f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}&nbsp; holds.
  
  
  
'''(3)'''&nbsp; Aufgrund des konstanten Quellensignals ist im gesamten hier betrachteten Zeitbereich&nbsp; T < t < 3T&nbsp; die Ableitung gleich Null, so dass die Augenblicksfrequenz gleich der Trägerfrequenz ist:
+
'''(3)'''&nbsp; Due to the constant source signal, the derivative is zero throughout the time interval&nbsp; T < t < 3T&nbsp; under consideration, so the instantaneous frequency is equal to the carrier frequency:
 
:f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.
 
:f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.
  
  
  
'''(4)'''&nbsp; Der lineare Abfall von&nbsp; q_1(t)&nbsp; im Zeitintervall&nbsp;  3T < t < 5T&nbsp; mit betragsmäßig gleicher Steigung, wie unter Punkt&nbsp; '''(2)'''&nbsp; berechnet, führt zum Ergebnis:
+
'''(4)'''&nbsp; The linear decay of&nbsp; q_1(t)&nbsp; in the time interval&nbsp;  3T < t < 5T&nbsp; with slope as calculated in&nbsp; '''(2)'''&nbsp; leads to the result:
 
:f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.
 
:f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.
  
  
  
'''(5)'''&nbsp; Durch Differentiation kommt man zur Augenblickskreisfrequenz:
+
'''(5)'''&nbsp; By differentiation, we arrive at the instantaneous angular frequency:
 
: \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.
 
: \omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.
*Mit dem Ergebnis der Teilaufgabe&nbsp; '''(2)'''&nbsp; ergibt sich somit:
+
*Using the result from &nbsp; '''(2)'''&nbsp;, we get:
 
:\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.
 
:\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.
  

Revision as of 14:56, 17 March 2022

Trapez– und Rechtecksignal

A phase modulator with input signal q_1(t)  a modulated signal s(t)  at the output are described as follows:

s(t) = A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\psi(t) \big ]= A_{\rm T} \cdot \cos \hspace{-0.05cm}\big[\omega_{\rm T} \cdot t + K_{\rm PM} \cdot q_1(t) \big ] \hspace{0.05cm}.
  • The carrier angular frequency is  ω_{\rm T} = 2π · 10^5 \cdot {1}/{\rm s}.
  • The instantaneous angular frequency  ω_{\rm A}(t)  is equal to the derivative of the angle function  ψ(t)  with respect to time.
  • The instantaneous frequency is thus  f_{\rm A}(t) = ω_{\rm A}(t)/2π.


The trapezoidal signal  q_1(t)  is applied as a test signal, where the nominated time duration is  T = 10 \ \rm µ s .

The same modulated signal  s(t)  would result from a frequency modulator with the angular function

\psi(t) = \omega_{\rm T} \cdot t + K_{\rm FM} \cdot \int q_2(t)\hspace{0.15cm}{\rm d}t

if the rectangular source signal  q_2(t)  is applied according to the lower plot.





Hints:


Questions

1

How should the modulator constant  K_{\rm PM}  be chosen so that  ϕ_{\rm max} = 3 \ \rm rad ?

K_{\rm PM} \ = \

\ \rm V^{-1}

2

What range of values does the instantaneous frequency  f_{\rm A}(t)  take on in the time interval 0 < t < T ?

f_\text{A, min} \ = \

\ \rm kHz
f_\text{A, max} \hspace{0.06cm} = \

\ \rm kHz

3

What range of values does the instantaneous frequency  f_{\rm A}(t) take on in the time interval  T < t < 3T ?

f_\text{A, min} \ = \

\ \rm kHz
f_\text{A, max} \hspace{0.06cm} = \

\ \rm kHz

4

What range of values does the instantaneous frequency f_{\rm A}(t) take on in the time interval  3T < t < 5T ?

f_\text{A, min} \ = \

\ \rm kHz
f_\text{A, max} \hspace{0.06cm} = \

\ \rm kHz

5

How must the modulator constant  K_{\rm FM} be chosen so that the signal q_2(t)  results in the same RF signal s(t)  after frequency modulation?

K_{\rm FM} \ = \

\ \cdot 10^5 \ \rm V^{-1}s^{-1}


Solution

(1)  The phase function is calculated as  ϕ(t) = K_{\rm PM} · q_1(t).  The phase deviation  ϕ_{\rm max} is equal to the phase resulting from the maximum value of the source signal:

\phi_{\rm max} = K_{\rm PM} \cdot 2\,{\rm V} = 3\,{\rm rad}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm PM} \hspace{0.15cm}\underline {= 1.5\,{\rm V^{-1}}} \hspace{0.05cm}.


(2)  In the range  0 < t < T , the angular function can be represented as follows:

\psi(t) = \omega_{\rm T} \cdot t + K_{\rm PM} \cdot 2\,{\rm V} \cdot {t}/{T}\hspace{0.05cm}.
  • The instantaneous angular frequency   ω_{\rm A}(t)  or the instantaneous frequency   f_{\rm A}(t)  the following holds:
\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}= \omega_{\rm T} + K_{\rm PM} \cdot \frac{2\,{\rm V}}{10\,{\rm µ s}}\hspace{0.05cm} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T} + \frac{1.5\,{\rm V}^{-1}}{2 \pi} \cdot 2 \cdot 10^5 \rm {V}/{ s} = 100\,{\rm kHz}+ 47.7\,{\rm kHz}= 147.7\,{\rm kHz}\hspace{0.05cm}.
  • The instantaneous frequency is constant, sonbsp; f_\text{A, min} = f_\text{A, max}\hspace{0.15cm}\underline{ = 147.7 \ \rm kHz}  holds.


(3)  Due to the constant source signal, the derivative is zero throughout the time interval  T < t < 3T  under consideration, so the instantaneous frequency is equal to the carrier frequency:

f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} \hspace{0.15cm}\underline {= 100\,{\rm kHz}}\hspace{0.05cm}.


(4)  The linear decay of  q_1(t)  in the time interval  3T < t < 5T  with slope as calculated in  (2)  leads to the result:

f_{\rm A, \hspace{0.05cm} min} =f_{\rm A, \hspace{0.05cm} max} =f_{\rm T} - 47.7\,{\rm kHz} \hspace{0.15cm}\underline {= 52.3\,{\rm kHz}}\hspace{0.05cm}.


(5)  By differentiation, we arrive at the instantaneous angular frequency:

\omega_{\rm A}(t) = \omega_{\rm T} + K_{\rm FM} \cdot q_2(t) \Rightarrow \hspace{0.3cm} f_{\rm A}(t) = f_{\rm T}+\frac{ K_{\rm FM}}{2 \pi} \cdot q_2(t)\hspace{0.05cm}.
  • Using the result from   (2) , we get:
\frac{ K_{\rm FM}}{2 \pi} \cdot 2\,{\rm V} = \frac{ 3 \cdot 10^5}{2 \pi} \cdot {\rm s^{-1}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} K_{\rm FM} \hspace{0.15cm}\underline {= 1.5 \cdot 10^5 \hspace{0.15cm}{\rm V^{-1}}{\rm s^{-1}}}\hspace{0.05cm}.