Difference between revisions of "Aufgaben:Exercise 4.13Z: AMI Code"

From LNTwww
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID427__Sto_Z_4_13.png|right|frame|ACF at AMI coding]]
+
[[File:P_ID427__Sto_Z_4_13.png|right|frame|Auto-correlation functions at the input and output of AMI coding]]
For spectral adaptation (shaping) of a digital signal to the characteristics of the channel, one uses so-called&nbsp; <i>pseudo-ternary codes</i>.&nbsp; In these codes, the binary source symbol sequence&nbsp; $\langle q_\nu \rangle$&nbsp; is converted to a sequence&nbsp; $\langle c_\nu \rangle$&nbsp; of ternary symbols according to a fixed rule:
+
For spectral adaptation&nbsp; (shaping)&nbsp; of a digital signal to the characteristics of the channel,&nbsp; one uses so-called&nbsp; "pseudo-ternary codes".&nbsp; With these codes,&nbsp; the binary source symbol sequence&nbsp; $\langle q_\nu \rangle$&nbsp; is converted to a sequence&nbsp; $\langle c_\nu \rangle$&nbsp; of ternary symbols according to a fixed rule:
 
:$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$
 
:$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$
  
The best known representative of this code class is the AMI code (from <i>Alternate Mark Inversion</i>).&nbsp; Here.
+
The best known representative of this code class is the AMI code&nbsp; (from&nbsp; "Alternate Mark Inversion").&nbsp; Here  
 
*the binary value&nbsp; $q_\nu = -1$&nbsp; is always mapped to&nbsp; $c_\nu = 0$&nbsp;,  
 
*the binary value&nbsp; $q_\nu = -1$&nbsp; is always mapped to&nbsp; $c_\nu = 0$&nbsp;,  
*while&nbsp; $q_\nu = +1$&nbsp; is alternately represented by the ternary values&nbsp; $c_\nu = +1$&nbsp; and&nbsp; $c_\nu = -1$&nbsp;.  
+
*while&nbsp; $q_\nu = +1$&nbsp; is alternately represented by the ternary values&nbsp; $c_\nu = +1$&nbsp; and&nbsp; $c_\nu = -1$.  
  
  
By convention, the ternary symbol&nbsp; $c_\nu = +1$&nbsp; shall be selected at the first occurrence of&nbsp; $q_\nu = +1$&nbsp;.
+
By convention,&nbsp; the ternary symbol&nbsp; $c_\nu = +1$&nbsp; shall be selected at the first occurrence of&nbsp; $q_\nu = +1$&nbsp;.
  
 
It is further assumed that  
 
It is further assumed that  
Line 19: Line 19:
  
  
Thus, all discrete ACF values are zero except&nbsp; $\varphi_q(k=0)$:
+
Thus,&nbsp; all discrete ACF values are zero except&nbsp; $\varphi_q(k=0)$:
:$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm f alls} \hspace{0.5cm} k \not= 0.$$
+
:$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm if} \hspace{0.5cm} k \not= 0.$$
  
Here&nbsp; $T$&nbsp; denotes the distance between sources&ndash; or code symbols.&nbsp; Use the value&nbsp; $T = 1 \hspace{0.05cm} \rm &micro; s$.
+
Here&nbsp; $T$&nbsp; denotes the time distance between the source symbols. Use&nbsp; $T = 1 \hspace{0.05cm} \rm &micro; s$. The code symbols have the same spacing.  
  
The figure shows the given auto-correlation functions.&nbsp; Please note:
+
The graphic shows the given auto-correlation functions.&nbsp; Please note:
  
* In red are respectively the discrete-time representations&nbsp; ${\rm A} \{ \varphi_q(\tau) \}$&nbsp; and&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; of the auto-correlation functions, each with the reference value&nbsp; $T$.
+
* In red are respectively the discrete-time representations&nbsp; ${\rm A} \{ \varphi_q(\tau) \}$&nbsp; and&nbsp; ${\rm A} \{ \varphi_c(\tau) \}$&nbsp; of the auto-correlation functions,&nbsp; each with the reference value&nbsp; $T$.
* The functions shown in blue indicate the continuous-time progressions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_c(\tau)$&nbsp; of the ACF, assuming square-wave pulses.
+
* The functions shown in blue indicate the continuous-time progressions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_c(\tau)$&nbsp; of the ACF,&nbsp; assuming square-wave pulses.
  
  
Line 38: Line 38:
 
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]].
 
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]].
 
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]]&nbsp; as well as to the page&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Numerical_PSD_determination|Numerical PSD determination]].
 
*Reference is also made to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]]&nbsp; as well as to the page&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Numerical_PSD_determination|Numerical PSD determination]].
+
*Use the following Fourier correspondence, where&nbsp; ${\rm \Delta} (t)$&nbsp; denotes  a triangular pulse symmetric about&nbsp; $t = 0$&nbsp; with&nbsp; ${\rm \Delta} (t= 0) = 1$&nbsp; and&nbsp; ${\rm \Delta} (t) = 0$&nbsp; for&nbsp; $|t| \ge T$:  
*Benutzen Sie die folgende Fourierkorrespondenz, wobei&nbsp; ${\rm \Delta} (t)$&nbsp; einen um&nbsp; $t = 0$&nbsp; symmetrischen Dreieckimpuls mit&nbsp; ${\rm \Delta} (t= 0) = 1$&nbsp; und&nbsp; ${\rm \Delta} (t) = 0$&nbsp; für&nbsp; $|t| \ge T$&nbsp; bezeichnet:
 
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
 
:$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$
  
Line 47: Line 46:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What is the discrete ACF&ndash;value of the source symbols for&nbsp; $k = 0$?
+
{What is the discrete ACF value of the source symbols for&nbsp; $k = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_q(k=0) \ = \ $ { 1 3% }
 
$\varphi_q(k=0) \ = \ $ { 1 3% }
  
  
{Which statements are valid for the PSD&ndash;functions&nbsp; ${\it \Phi}_q(f)$&nbsp; and&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$?
+
{Which statements are valid for the PSD functions&nbsp; ${\it \Phi}_q(f)$&nbsp; and&nbsp; ${\rm P} \{ {\it \Phi}_q(f) \}$?
 
|type="[]"}
 
|type="[]"}
 
+ ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; is a constant for all frequencies.
 
+ ${\rm P} \{ {\it \Phi}_q(f) \}$&nbsp; is a constant for all frequencies.
 
- ${\it \Phi}_q(f)$&nbsp; is constant for&nbsp; $|f \cdot T| < 0.5$&nbsp; and outside zero.
 
- ${\it \Phi}_q(f)$&nbsp; is constant for&nbsp; $|f \cdot T| < 0.5$&nbsp; and outside zero.
+ ${\it \Phi}_q(f)$&nbsp; proceeds&nbsp; $\rm si^2$-shaped.
+
+ ${\it \Phi}_q(f)$&nbsp; is&nbsp; $\rm sinc^2$-shaped.
  
  
Line 65: Line 64:
  
  
{What is the discrete ACF&ndash;value of the code symbols for&nbsp; $k = 0$.
+
{What is the discrete ACF value of the code symbols for&nbsp; $k = 0$.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_c(k=0) \ = \ $ { 0.5 3% }
 
$\varphi_c(k=0) \ = \ $ { 0.5 3% }
Line 77: Line 76:
  
  
{What power spectral density&nbsp; ${\it \Phi}_c(f)$&nbsp; results for frequency&nbsp;$f=0$ or for&nbsp;$f = 500 \hspace{0.08cm}  \rm kHz$. &nbsp; <i>Note:</i> &nbsp; For&nbsp; $|k| \ge 2$&nbsp; all ACF&ndash;values&nbsp; $\varphi_c(k) are \equiv 0$.
+
{What power-spectral density&nbsp; ${\it \Phi}_c(f)$&nbsp; results for frequencies&nbsp;$f=0$&nbsp; and&nbsp;$f = 500 \hspace{0.08cm}  \rm kHz$. &nbsp; <br>Note: &nbsp; For&nbsp; $|k| \ge 2$ &nbsp; &rArr; &nbsp; all ACF&ndash;values&nbsp; $\varphi_c(k) = 0$.
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_c(f = 0) \ = \ $ { 0. } $\ \cdot 10^{-6} \ \rm 1/Hz$
 
${\it \Phi}_c(f = 0) \ = \ $ { 0. } $\ \cdot 10^{-6} \ \rm 1/Hz$

Revision as of 17:07, 25 March 2022

Auto-correlation functions at the input and output of AMI coding

For spectral adaptation  (shaping)  of a digital signal to the characteristics of the channel,  one uses so-called  "pseudo-ternary codes".  With these codes,  the binary source symbol sequence  $\langle q_\nu \rangle$  is converted to a sequence  $\langle c_\nu \rangle$  of ternary symbols according to a fixed rule:

$$q_{\nu} \in \{ -1,\hspace{0.1cm} +1 \} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_{\nu} \in \{ -1, \hspace{0.1cm}0, \hspace{0.1cm}+1 \} .$$

The best known representative of this code class is the AMI code  (from  "Alternate Mark Inversion").  Here

  • the binary value  $q_\nu = -1$  is always mapped to  $c_\nu = 0$ ,
  • while  $q_\nu = +1$  is alternately represented by the ternary values  $c_\nu = +1$  and  $c_\nu = -1$.


By convention,  the ternary symbol  $c_\nu = +1$  shall be selected at the first occurrence of  $q_\nu = +1$ .

It is further assumed that

  • the two possible source symbols are each equally probable and
  • the source symbol sequence  $\langle q_\nu \rangle $ has no internal statistical bindings.


Thus,  all discrete ACF values are zero except  $\varphi_q(k=0)$:

$$\varphi_q ( k \cdot T) = 0 \hspace{0.5cm} {\rm if} \hspace{0.5cm} k \not= 0.$$

Here  $T$  denotes the time distance between the source symbols. Use  $T = 1 \hspace{0.05cm} \rm µ s$. The code symbols have the same spacing.

The graphic shows the given auto-correlation functions.  Please note:

  • In red are respectively the discrete-time representations  ${\rm A} \{ \varphi_q(\tau) \}$  and  ${\rm A} \{ \varphi_c(\tau) \}$  of the auto-correlation functions,  each with the reference value  $T$.
  • The functions shown in blue indicate the continuous-time progressions  $\varphi_q(\tau)$  and  $\varphi_c(\tau)$  of the ACF,  assuming square-wave pulses.




Hints:

  • This exercise belongs to the chapter  Power-Spectral Density.
  • Reference is also made to the chapter  Auto-Correlation Function  as well as to the page  Numerical PSD determination.
  • Use the following Fourier correspondence, where  ${\rm \Delta} (t)$  denotes a triangular pulse symmetric about  $t = 0$  with  ${\rm \Delta} (t= 0) = 1$  and  ${\rm \Delta} (t) = 0$  for  $|t| \ge T$:
$${\rm \Delta} (t) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} T \cdot {\rm si}^2 ( \pi f T).$$


Questions

1

What is the discrete ACF value of the source symbols for  $k = 0$?

$\varphi_q(k=0) \ = \ $

2

Which statements are valid for the PSD functions  ${\it \Phi}_q(f)$  and  ${\rm P} \{ {\it \Phi}_q(f) \}$?

${\rm P} \{ {\it \Phi}_q(f) \}$  is a constant for all frequencies.
${\it \Phi}_q(f)$  is constant for  $|f \cdot T| < 0.5$  and outside zero.
${\it \Phi}_q(f)$  is  $\rm sinc^2$-shaped.

3

The source symbol sequence is  $\langle q_\nu \rangle = \langle +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 \rangle$.
What are the code symbols  $c_\nu$ ? Enter the code symbol  $c_6$ .

$c_6 \ = \ $

4

What is the discrete ACF value of the code symbols for  $k = 0$.

$\varphi_c(k=0) \ = \ $

5

Calculate the ACF values  $\varphi_c(k=+1)$  and  $\varphi_c(k=-1)$.

$\varphi_c(k=+1) \ = \ $

$\varphi_c(k=-1) \ = \ $

6

What power-spectral density  ${\it \Phi}_c(f)$  results for frequencies $f=0$  and $f = 500 \hspace{0.08cm} \rm kHz$.  
Note:   For  $|k| \ge 2$   ⇒   all ACF–values  $\varphi_c(k) = 0$.

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$
${\it \Phi}_c(f = 500 \hspace{0.08cm} \rm kHz)\ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$
$c_6 \ = \ $


Solution

(1)  The discrete ACF value for  $k = 0$  gives the root mean square (here equal to the variance) of the source symbols.

  • Since  $q_\nu$  can only take the values  $-1$  and  $+1$  ,  $\varphi_q(k=0)\hspace{0.15cm}\underline{= 1}$.


(2)  Correct are the proposed solutions 1 and 3:

  • The discrete-time ACF and its Fourier transform are:
$${\rm A} \{ \varphi_q ( \tau ) \} = \varphi_q ( k = 0) \cdot T \cdot \delta (\tau) \hspace{0.3cm} \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.3cm} {\rm P} \{{\it \Phi_q}( f) \} = \varphi_q ( k = 0) \cdot T = T.$$
  • It is considered that  $\varphi_q(k=0)= \sigma_q^2= 1$  This means:  
The periodic continuation of  ${\rm P} \{ {\it \Phi}_q(f) \}$  thus gives the same value for all frequencies.
  • In contrast, the continuous-time ACF can be represented as follows:  
$$ \varphi_q ( \tau ) = {\rm A} \{ \varphi_q ( \tau ) \} \star ( {\rm \delta} ( \tau) / T ).$$
  • The associated Power spectral density spectrum (Fourier transform of the ACF) is then the product of the Fourier transforms of the two convolution terms:  
$$ {\it \Phi_q} ( f) = {\rm P} \{ {\it \Phi_q}( f) \} \cdot {\rm si}^2 (\pi f T ) = T \cdot {\rm si}^2 (\pi f T ) .$$
  • Based on the chosen ACF interpolation (with straight line intercepts) from their samples, a  $\rm si^2$-shaped PSD is obtained.
  • A rectangular spectrum according to the proposed solution  (2)  would only occur with  $\rm si$-shaped interpolation.


(3)  The coded sequence is:   $\langle +1, \ 0, -1, +1, \ 0, -1, +1, \ 0, \ 0, \ 0 \rangle$.  Thus the 6th symbol is  $c_6\hspace{0.15cm}\underline{= -1}$.


(4)  The probabilities of occurrence of the values  $-1$ , $\ 0$  and $+1$  are  $0.25, 0.5, 0.25$.  It follows:

$$\varphi_c ( k = 0) = 0.25 \cdot (-1)^2 + 0.5 \cdot 0^2 +0.25 \cdot (+1)^2\hspace{0.15cm}\underline{ = 0.5}. $$


(5)  For the ACF value at  $k = 1$  consider the product  $c_{\nu} \cdot c_{\nu+1}$.  The combinations shown on the right are obtained.

  • Only products  $c_{\nu} \cdot c_{\nu+1} \ne 0$  with  ${\rm Pr}\big[c_{\nu} \cdot c_{\nu+1}\big] \ne 0$:
$$\varphi_c ( k = 1) = {\rm Pr} \big [( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] \cdot (+1) \cdot (-1) + {\rm Pr} \big [ ( c_{\nu} = -1) \cap ( c_{\nu + 1} = +1) \big ] \cdot (-1) \cdot (+1).$$
For ACF calculation of AMI code
  • In the table, these terms are marked in red. Further:
$$ {\rm Pr} \big [ ( c_{\nu} = +1) \cap ( c_{\nu + 1} = -1) \big ] = $$
$$ = {\rm Pr} ( c_{\nu} = +1) \cdot {\rm Pr} \left ( c_{\nu + 1} = -1 | c_{\nu } = +1) \right ) = \frac{1}{4} \cdot \frac{1}{2}= \frac{1}{8} . $$
Here it is assumed that  $+1$  occurs with probability  $0.25$  and is followed by  $-1$  only in half of the cases.
  • The same result is obtained for the second contribution. Thus applies:

$$varphi_c ( k = 1) = \frac {1}{8} \cdot (+1)\cdot (-1) + \frac {1}{8} \cdot (-1)\cdot (+1) \hspace{0.15cm}\underline{= -0.25}.$$

$$\varphi_c ( k = -1) = \varphi_c ( k = 1) \hspace{0.15cm}\underline{= -0.25}.$$
  • To calculate  $\varphi_c ( k = 2)$  it is necessary to average over  $3^3 = 27$  combinations. The result is zero.


(6)  The Fourier transform of the discrete-time ACF  ${\rm A} \{ \varphi_c(\tau) \}$  is:

$$P \{{\it \Phi_c}( f) \} = T\cdot \varphi_c ( k = 0) +2T \cdot \varphi_c ( k = 1) \cdot {\rm cos} ( 2 \pi f T ).$$
  • With the result of the last subtask, it follows:
$$P \{{\it \Phi}_c( f) \} = \frac {T}{2} (1 - {\rm cos} ( 2 \pi f T ) )= T \cdot {\rm sin}^2 ( \pi f T ).$$
  • As shown in item  (2), then, for the PSD – that is, the Fourier transform of  $\varphi_c(\tau)$:
$${\it \Phi_c}( f) = T \cdot {\rm sin}^2 ( \pi f T ) \cdot {\rm si}^2 ( \pi f T ) = T \cdot \frac {{\rm sin}^4 ( \pi f T )}{( \pi f T )^2 } .$$
$$\Rightarrow \hspace{0.3cm} {\it \Phi_c}( f = 0) \hspace{0.15cm}\underline{= 0}, \hspace{0.8cm} {\it \Phi_c}( f = {\rm500 \hspace{0.1cm}kHz}) = T \cdot \frac {{\rm sin}^4 ( \pi /2 )}{( \pi /2 )^2 } = \frac {4 T}{\pi^2} \rm \hspace{0.15cm}\underline{= 0.405 \cdot 10^{-6} \ {1}/{Hz}}.$$