Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.3Z: Characteristics Determination"

From LNTwww
m
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  

Revision as of 16:51, 9 April 2022

Spectrum of the analytical signal

Let us consider the phase modulation of the harmonic oscillation

q(t)=ANcos(2πfNt+ϕN),

which, given a normalized carrier amplitude  (AT=1) , leads to the following transmitted signal:

s(t)=cos[ωTt+KPMq(t)].

The spectrum of the corresponding analytical signal sTP(t)  is generally:

STP(f)=+n=Jn(η)ejn(ϕN+90)δ(fnfN)

Here,  η = K_{\rm PM} · A_{\rm N}  is called the modulation index.

In the graph, the real and imaginary parts of the spectrum  S_+(f)  of the analytical signal  s_+(t) are shown separately. This should be used to determine the characteristics  f_{\rm T},  f_{\rm N},  ϕ_{\rm N}  and  η .





Hints:

  • For the calculation of the modulation index, you can take advantage of the following property of the Bessel function:
{\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.


Questions

1

What are the frequencies  f_{\rm T}  and  f_{\rm N}?

f_{\rm T} \ = \

\ \rm kHz
f_{\rm N} \ = \

\ \rm kHz

2

Calculate the magnitude and the phase of  S_{\rm TP}(f = 3 \ \rm kHz).

|S_{\rm TP}(f = 3 \ \rm kHz)| \ = \

{\rm arc} \ S_{\rm TP}(f = 3\ \rm kHz) \ = \

\ \rm Grad

3

Calculate the magnitude and the phase of  S_{\rm TP}(f = 6 \ \rm kHz).

|S_{\rm TP}(f = 6 \ \rm kHz)| \ = \

{\rm arc} \ S_{\rm TP}(f = 6\ \rm kHz) \ = \

\ \rm Grad

4

What is the phase of the source signal  q(t)?

ϕ_{\rm N} \ = \

\ \rm Grad

5

What is the magnitude of the modulation index  η ?

η \ = \


Solution

(1)  Regarding   |S_+(f)|  there is a symmetry with respect to the carrier frequency  f_{\rm T}\hspace{0.15cm}\underline { = 40 \ \rm kHz}.  The distance between the spectral lines is  f_{\rm N}\hspace{0.15cm}\underline { = 3 \ \rm kHz}.


(2)  Considering  S_{\rm TP}(f = 3{\ \rm kHz}) = S_+(f = 43 \ \rm kHz) , it holds that:

|S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},
{\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.


(3)  Analogously to in question  (2) , at frequency   f = 6 \ \rm kHz we obtain:

|S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},
{\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.


(4)  When   n = 1   ⇒   f = 3 \ \rm kHz  as in question   (2), the phase is:

\phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.
  • Checkin this result when   n = 2   ⇒   f = 6 \ \rm kHz  as in question  (3)  yields the same value:
2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.


(5)  The given equation can be rewritten as follows:

\eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.
  • Mit  {\rm J}_0(η) = 0.512{\rm J}_1(η) = 0.558  und  {\rm J}_2(η) = 0.232  erhält man somit:
\eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.