Difference between revisions of "Aufgaben:Exercise 3.3Z: Characteristics Determination"
m |
|||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM) |
}} | }} | ||
Revision as of 16:51, 9 April 2022
Let us consider the phase modulation of the harmonic oscillation
- q(t)=AN⋅cos(2π⋅fN⋅t+ϕN),
which, given a normalized carrier amplitude (AT=1) , leads to the following transmitted signal:
- s(t)=cos[ωT⋅t+KPM⋅q(t)].
The spectrum of the corresponding analytical signal sTP(t) is generally:
- STP(f)=+∞∑n=−∞Jn(η)⋅ej⋅n⋅(ϕN+90∘)⋅δ(f−n⋅fN)
Here, η = K_{\rm PM} · A_{\rm N} is called the modulation index.
In the graph, the real and imaginary parts of the spectrum S_+(f) of the analytical signal s_+(t) are shown separately. This should be used to determine the characteristics f_{\rm T}, f_{\rm N}, ϕ_{\rm N} and η .
Hints:
- This exercise belongs to the chapter Phase Modulation.
- Particular reference is made to the page Equivalent low-pass signal in phase modulation.
- For the calculation of the modulation index, you can take advantage of the following property of the Bessel function:
- {\rm J}_n (\eta) = \frac{2 \cdot (n-1)}{\eta} \cdot {\rm J}_{n-1} (\eta) - {\rm J}_{n-2} (\eta) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm J}_{2} (\eta)= {2}/{\eta} \cdot {\rm J}_{1} (\eta) - {\rm J}_{0} (\eta) \hspace{0.05cm}.
Questions
Solution
(2) Considering S_{\rm TP}(f = 3{\ \rm kHz}) = S_+(f = 43 \ \rm kHz) , it holds that:
- |S_{\rm TP}(f = 3\,{\rm kHz})| = \sqrt{0.279^2 + 0.483^2} \hspace{0.15cm}\underline {= 0.558}\hspace{0.05cm},
- {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 3\,{\rm kHz}) = \arctan \frac{0.483}{0.279} = \arctan 1.732\hspace{0.15cm}\underline { = 60^\circ} \hspace{0.05cm}.
(3) Analogously to in question (2) , at frequency f = 6 \ \rm kHz we obtain:
- |S_{\rm TP}(f = 6\,{\rm kHz})| = \sqrt{(-0.116)^2 + 0.201^2} \hspace{0.15cm}\underline {= 0.232}\hspace{0.05cm},
- {\rm arc}\hspace{0.15cm} S_{\rm TP}(f = 6\,{\rm kHz}) = \arctan \frac{-0.116}{0.201} = 180^\circ - \arctan 1.732 \hspace{0.15cm}\underline {= 120^\circ} \hspace{0.05cm}.
(4) When n = 1 ⇒ f = 3 \ \rm kHz as in question (2), the phase is:
- \phi_{\rm N} + 90^\circ = 60^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} = -30^\circ\hspace{0.05cm}.
- Checkin this result when n = 2 ⇒ f = 6 \ \rm kHz as in question (3) yields the same value:
- 2\cdot (\phi_{\rm N} + 90^\circ) = 120^\circ \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\phi_{\rm N} \hspace{0.15cm}\underline {= -30^\circ}\hspace{0.05cm}.
(5) The given equation can be rewritten as follows:
- \eta = \frac{2 \cdot {\rm J}_{1}{(\eta)}}{{\rm J}_{0}(\eta) + {\rm J}_{2}(\eta)} \hspace{0.05cm}.
- Mit {\rm J}_0(η) = 0.512, {\rm J}_1(η) = 0.558 und {\rm J}_2(η) = 0.232 erhält man somit:
- \eta = \frac{2 \cdot 0.558}{0.512 + 0.232}\hspace{0.15cm}\underline { = 1.5}\hspace{0.05cm}.