Difference between revisions of "Aufgaben:Exercise 2.7: AMI Code"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Symbolweise Codierung mit Pseudoternärcodes
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes
 
}}
 
}}
  
  
[[File:P_ID1351__Dig_A_2_7.png|right|frame|Blockschaltbild eines Pseudoternärcoders]]
+
[[File:P_ID1351__Dig_A_2_7.png|right|frame|Block diagram of a pseudo ternary encoder]]
Die Grafik zeigt das Blockschaltbild zur AMI–Codierung, wobei von den binären bipolaren Amplitudenkoeffizienten  $q_{\nu} ∈ \{–1, +1\}$  am Eingang ausgegangen wird. Diese Umcodierung erfolgt zweistufig:  
+
The diagram shows the block diagram for AMI coding, assuming binary bipolar amplitude coefficients  $q_{\nu} ∈ \{–1, +1\}$  at the input. This recoding is done in two stages:
*Im ersten Teil des Blockschaltbildes wird bei jedem Taktschritt ein binär–vorcodiertes Symbol  $b_{\nu}$  aus der Modulo–2–Addition von  $q_{\nu}$  und  $b_{\nu -1}$  erzeugt. Es gilt  $b_{\nu} ∈ \{–1, +1\}.$
+
*In the first part of the block diagram, a binary precoded symbol  $b_{\nu}$  is generated at each clock step from the modulo-2 addition of  $q_{\nu}$  and  $b_{\nu -1}$.  It holds  $b_{\nu} ∈ \{–1, +1\}.$
*Danach wird durch eine herkömmliche Subtraktion der aktuelle Amplitudenkoeffizient des ternären Sendesignals  $s(t)$  bestimmt. Dabei gilt:
+
*Then, the current amplitude coefficient of the ternary transmitted signal  $s(t)$  is determined by a conventional subtraction. Thereby holds:
 
:$$a_\nu = {1}/{2} \cdot \left [ b_\nu - b_{\nu-1} \right ] \hspace{0.05cm}.$$
 
:$$a_\nu = {1}/{2} \cdot \left [ b_\nu - b_{\nu-1} \right ] \hspace{0.05cm}.$$
Aufgrund der AMI–Codierung wird sichergestellt, dass keine langen „$+1$”– bzw. „$–1$”–Sequenzen entstehen. Um auch lange Nullfolgen zu vermeiden, wurden auch modifizierte AMI–Codes entwickelt:
+
Due to AMI coding, it is ensured that no long "$+1$"– or "$–1$" sequences are created. Modified AMI codes have also been developed to avoid long zero sequences:
*Beim HDB3–Code werden je vier aufeinanderfolgende Nullen durch eine gezielte Verletzung der AMI–Codierregel markiert.
+
*In the HDB3 code, four consecutive zeros each are marked by a specific violation of the AMI coding rule.
*Beim B6ZS–Code werden sechs aufeinanderfolgende Nullen durch eine gezielte Verletzung der AMI–Codierregel markiert.
+
*In the B6ZS code, six consecutive zeros are marked by a targeted violation of the AMI coding rule.
  
  
Das Leistungsdichtespektrum  ${\it \Phi}_{a}(f)$  der Amplitudenkoeffizienten soll aus den diskreten AKF–Werten  $\varphi_{a}(\lambda) = {\E}\big[a_{\nu} \cdot a_{\nu + \lambda}\big]$  ermittelt werden. Die Fouriertransformation lautet in diskreter Darstellung:
+
The power-spectral density  ${\it \Phi}_{a}(f)$  of the amplitude coefficients is to be obtained from the discrete ACF values  $\varphi_{a}(\lambda) = {\E}\big[a_{\nu} \cdot a_{\nu + \lambda}\big]$.  The Fourier transform in discrete representation is:
 
:$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$
 
:$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$
  
Line 22: Line 22:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Symbol-Wise_Coding_with_Pseudo_Ternary_Codes|Symbol-Wise Coding with Pseudo Ternary Codes]].
 
   
 
   
*Sie können die Ergebnisse mit dem interaktiven Applet  [[Applets:Pseudoternaercodierung|Signale, AKF und LDS der Pseudoternärcodes]]  überprüfen.
+
*You can check the results with the interactive applet  [[Applets:Pseudoternaercodierung|Signals, ACF and PSD of pseudo ternary codes]]. 
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
{Am Eingang liegt  &nbsp;$\langle q_{\nu} \rangle = \langle +1, –1, +1, +1, –1, +1, +1, –1, –1, –1, –1, +1 \rangle$&nbsp; an. Ermitteln Sie die binär–vorcodierte Folge &nbsp;$\langle b_{\nu} \rangle$&nbsp; mit der Vorbelegung $b_{0} = \hspace{0.05cm}–1$. <br>Geben Sie zur Kontrolle folgende Werte ein:
+
{At the input, &nbsp;$\langle q_{\nu} \rangle = \langle +1, –1, +1, +1, –1, +1, +1, –1, –1, –1, –1, +1 \rangle$&nbsp; is applied. Determine the binary precoded sequence &nbsp;$\langle b_{\nu} \rangle$&nbsp; with the default $b_{0} = \hspace{0.05cm}–1$. <br>Enter the following values as a check:
 
|type="{}"}
 
|type="{}"}
 
$b_{1} \hspace{0.26cm} = \ $ { 1 3% }
 
$b_{1} \hspace{0.26cm} = \ $ { 1 3% }
Line 37: Line 37:
 
$b_{12} \ = \ $ { -1.03--0.97 }
 
$b_{12} \ = \ $ { -1.03--0.97 }
  
{Ermitteln Sie weiterhin die Folge &nbsp;$\langle a_{\nu} \rangle$&nbsp; der Amplitudenkoeffizienten des AMI–codierten Sendesignals &nbsp;$s(t)$. <br>Geben Sie zur Ergebnisüberprüfung folgende Werte ein:
+
{Furthermore, determine the sequence &nbsp;$\langle a_{\nu} \rangle$&nbsp; of the amplitude coefficients of the AMI-coded transmitted signal &nbsp;$s(t)$. <br>Enter the following values to check the results:
 
|type="{}"}
 
|type="{}"}
 
$a_{1} \hspace{0.28cm} = \ $ { 1 3% }
 
$a_{1} \hspace{0.28cm} = \ $ { 1 3% }
Line 44: Line 44:
  
  
{Würde sich ein HDB3– bzw. ein B6ZS–Signal im betrachteten Bereich &nbsp;$(\text{also über }12T)$&nbsp; vom AMI–Code unterscheiden?
+
{Would an HDB3 or a B6ZS signal differ from the AMI code in the range under consideration &nbsp;$(\text{i.e. above }12T)$?&nbsp;  
 
|type="[]"}
 
|type="[]"}
+ Der HDB3–Code unterscheidet sich vom AMI–Code.
+
+ The HDB3 code is different from the AMI code.
- Der B6ZS–Code unterscheidet sich vom AMI–Code.
+
- The B6ZS code is different from the AMI code.
  
{Wie groß sind die drei Auftrittswahrscheinlichkeiten beim AMI–Code?
+
{What are the three probabilities of occurrence in the AMI code?
 
|type="{}"}
 
|type="{}"}
 
${\Pr}(a_{\nu} = + 1) \ = \ $ { 0.25 3% }
 
${\Pr}(a_{\nu} = + 1) \ = \ $ { 0.25 3% }
Line 55: Line 55:
 
${\Pr}(a_{\nu} = - 1) \ = \ $ { 0.25 3% }
 
${\Pr}(a_{\nu} = - 1) \ = \ $ { 0.25 3% }
  
{Berechnen Sie die beiden ersten Mittelwerte der Amplitudenkoeffizienten.
+
{Calculate the first two mean values of the amplitude coefficients.
 
|type="{}"}
 
|type="{}"}
 
$\E\big[a_{\nu}\big] \ = \ $ { 0. }
 
$\E\big[a_{\nu}\big] \ = \ $ { 0. }
 
$\E\big[a_{\nu}^{2}\big] \ = \ $ { 0.5 3% }
 
$\E\big[a_{\nu}^{2}\big] \ = \ $ { 0.5 3% }
  
{Berechnen Sie die Autokorrelationsfunktion &nbsp;$\varphi_{a}(\lambda)$, insbesondere die folgenden AKF–Werte:
+
{Calculate the auto-correlation function &nbsp;$\varphi_{a}(\lambda)$, in particular the following ACF values:
 
|type="{}"}
 
|type="{}"}
 
$\varphi_{a}(\lambda = 0) \ = \ $ { 0.5 3% }
 
$\varphi_{a}(\lambda = 0) \ = \ $ { 0.5 3% }
Line 66: Line 66:
 
$\varphi_{a}(\lambda = 2) \ = \ $ { 0. }
 
$\varphi_{a}(\lambda = 2) \ = \ $ { 0. }
  
{Wie lautet das  Leistungsdichtespektrum &nbsp;${\it \Phi}_{a}(f)$? Welche Werte ergeben für &nbsp;$f = 0$&nbsp; und &nbsp;$f = 1/(2T)$?
+
{What is the power-spectral density &nbsp;${\it \Phi}_{a}(f)$? What are the values for &nbsp;$f = 0$&nbsp; and &nbsp;$f = 1/(2T)$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_{a}(f = 0) \ = \ $ { 0. }
 
${\it \Phi}_{a}(f = 0) \ = \ $ { 0. }
Line 74: Line 74:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Modulo–2–Addition kann auch als Antivalenz aufgefasst werden.  
+
'''(1)'''&nbsp; The modulo-2 addition can also be taken as an antivalence.
*Es gilt $b_{\nu} = +1$, falls sich $q_{\nu}$ und $b_{\nu – 1}$ unterscheiden, andernfalls ist $b_{\nu} = -1$ zu setzen.  
+
*It is $b_{\nu} = +1$ if $q_{\nu}$ and $b_{\nu – 1}$ differ, otherwise set $b_{\nu} = -1$.  
*Mit dem Startwert $b_{0} = -1$ erhält man:
+
*With the initial value $b_{0} = -1$ we obtain:
 
:$$b_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} b_2 = +1, \hspace{0.2cm}b_3 = -1, \hspace{0.2cm}b_4 = +1, \hspace{0.2cm}b_5 = +1, \hspace{0.2cm}b_6 = -1\hspace{0.05cm},$$
 
:$$b_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} b_2 = +1, \hspace{0.2cm}b_3 = -1, \hspace{0.2cm}b_4 = +1, \hspace{0.2cm}b_5 = +1, \hspace{0.2cm}b_6 = -1\hspace{0.05cm},$$
 
:$$b_7 = +1, \hspace{0.2cm} b_8 = +1, \hspace{0.2cm}b_9 = +1, \hspace{0.2cm}b_{10} = +1, \hspace{0.2cm}b_{11} \hspace{0.15cm}\underline {= +1}, \hspace{0.2cm}b_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$
 
:$$b_7 = +1, \hspace{0.2cm} b_8 = +1, \hspace{0.2cm}b_9 = +1, \hspace{0.2cm}b_{10} = +1, \hspace{0.2cm}b_{11} \hspace{0.15cm}\underline {= +1}, \hspace{0.2cm}b_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$
 
 
  
'''(2)'''&nbsp; Die AMI–Codierung liefert die folgenden Amplitudenkoeffizienten:
+
'''(2)'''&nbsp; AMI coding gives the following amplitude coefficients:
 
:$$a_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} a_2 = 0, \hspace{0.2cm}a_3 = -1, \hspace{0.2cm}a_4 = +1, \hspace{0.2cm}a_5 = 0, \hspace{0.2cm}a_6 = -1\hspace{0.05cm},$$
 
:$$a_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} a_2 = 0, \hspace{0.2cm}a_3 = -1, \hspace{0.2cm}a_4 = +1, \hspace{0.2cm}a_5 = 0, \hspace{0.2cm}a_6 = -1\hspace{0.05cm},$$
 
:$$a_7 = +1, \hspace{0.2cm} a_8 = 0, \hspace{0.2cm}a_9 = 0, \hspace{0.2cm}a_{10} = 0, \hspace{0.2cm}a_{11}\hspace{0.15cm}\underline { = 0}, \hspace{0.2cm}a_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$
 
:$$a_7 = +1, \hspace{0.2cm} a_8 = 0, \hspace{0.2cm}a_9 = 0, \hspace{0.2cm}a_{10} = 0, \hspace{0.2cm}a_{11}\hspace{0.15cm}\underline { = 0}, \hspace{0.2cm}a_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$
Zu diesem Ergebnis kommt man  über die Gleichung $a_{\nu} = (b_{\nu} - b_{\nu –1})/2$ oder durch direkte Anwendung der AMI–Codierregel:
+
This result is obtained by the equation $a_{\nu} = (b_{\nu} - b_{\nu –1})/2$ or by direct application of the AMI coding rule:
*Ein Quellensymbol $q_{\nu} = -1$ führt stets zu $a_{\nu} = 0$.
+
*A source symbol $q_{\nu} = -1$ always leads to $a_{\nu} = 0$.
*Die Quellensymbole $q_{\nu} = +1$ führen alternierend zu $a_{\nu} = +1$ und $a_{\nu} = -1$.
+
*Source symbols $q_{\nu} = +1$ lead alternately to $a_{\nu} = +1$ and $a_{\nu} = -1$.
  
  
'''(3)'''&nbsp; Richtig ist der  <u>Lösungsvorschlag 1</u>:
+
'''(3)'''&nbsp; <u>Solution 1</u> is correct:
*Der AMI–Code liefert im Bereich zwischen $\nu = 8$ und $\nu = 11$ vier aufeinanderfolgende Nullen.  
+
*The AMI code yields four consecutive zeros in the range between $\nu = 8$ and $\nu = 11$.
*Beim HDB3–Code würden diese vier Symbole mit „$+ 0 0 +$” markiert. Dadurch wird zur Kenntlichmachung die AMI–Regel bewusst verletzt.  
+
*In the HDB3 code, these four symbols would be marked with "$+ 0 0 +$". Thus, the AMI rule is deliberately violated for identification purposes.
*Dagegen ersetzt der B6ZS–Code nur Nullfolgen über sechs Symbole.  
+
*In contrast, the B6ZS code substitutes only zero sequences over six symbols.
  
  
'''(4)'''&nbsp; Unter der Annahme gleichwahrscheinlicher Binärwerte $±1$ erhält man ${\Pr}(a_{\nu} = 0) = {\Pr}(q_{\nu} = -1)\hspace{0.15cm}\underline{ = 1/2}$ und aus Symmetriegründen
+
'''(4)'''&nbsp; Assuming equally probable binary values $±1$, we obtain ${\Pr}(a_{\nu} = 0) = {\Pr}(q_{\nu} = -1)\hspace{0.15cm}\underline{ = 1/2}$ and for symmetry reasons
 
: ${\Pr}(a_{\nu} = +1) = {\Pr}(a_{\nu} = -1) \hspace{0.15cm}\underline{ = 1/4}.$
 
: ${\Pr}(a_{\nu} = +1) = {\Pr}(a_{\nu} = -1) \hspace{0.15cm}\underline{ = 1/4}.$
  
  
'''(5)'''&nbsp; Mit den unter '''(4)''' berechneten Wahrscheinlichkeiten erhält man:
+
'''(5)'''&nbsp; Using the probabilities calculated in '''(4)''', we obtain:
 
:$${\rm E}\big[a_\nu \big] = \ {1}/{4} \cdot (+1) +{1}/{2} \cdot 0+ {1}/{4} \cdot (-1)\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},$$
 
:$${\rm E}\big[a_\nu \big] = \ {1}/{4} \cdot (+1) +{1}/{2} \cdot 0+ {1}/{4} \cdot (-1)\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},$$
 
:$$ {\rm E}\big[a_\nu^2 \big] = \ {1}/{4} \cdot (+1)^2 +{1}/{2} \cdot 0^2 + {1}/{4} \cdot (-1)^2 \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
 
:$$ {\rm E}\big[a_\nu^2 \big] = \ {1}/{4} \cdot (+1)^2 +{1}/{2} \cdot 0^2 + {1}/{4} \cdot (-1)^2 \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; Der AKF–Wert bei $\lambda = 0$ ist gleich dem quadratischen Mittelwert der Amplitudenkoeffizienten:
+
'''(6)'''&nbsp; The ACF value at $\lambda = 0$ is equal to the root mean square of the amplitude coefficients:
 
:$$ \varphi_a(\lambda = 0) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
 
:$$ \varphi_a(\lambda = 0) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
*Da die Ordnung des AMI–Codes $N = 1$ ist, gilt für $\lambda > 1$: &nbsp; $\varphi_a(\lambda > 1) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$
+
*Since the order of the AMI code is $N = 1$, for $\lambda > 1$: &nbsp; $\varphi_a(\lambda > 1) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$
  
*Der AKF–Wert $\varphi_{a}(\lambda = 1)$ muss durch Mittelung bestimmt werden:  &nbsp; $\varphi_a(\lambda = 1) = {\rm E}[a_\nu \cdot a_{\nu+1} \cdot {\rm Pr}(a_\nu \cap a_{\nu+1})] \hspace{0.05cm}.$
+
*The ACF value $\varphi_{a}(\lambda = 1)$ must be determined by averaging:  &nbsp; $\varphi_a(\lambda = 1) = {\rm E}[a_\nu \cdot a_{\nu+1} \cdot {\rm Pr}(a_\nu \cap a_{\nu+1})] \hspace{0.05cm}.$
  
*Von den neun Kombinationsmöglichkeiten für $a_{\nu} \cdot a_{\nu +1}$ liefern nur vier einen von Null verschiedenen Wert. In den anderen Fällen ist entweder $a_{\nu} = 0$ oder $a_{\nu +1} = 0$.  
+
*Of the nine possible combinations for $a_{\nu} \cdot a_{\nu +1}$, only four yield a nonzero value. In the other cases, either $a_{\nu} = 0$ or $a_{\nu +1} = 0$.  
  
  
Da beim AMI–Code aber auch
+
However, since in AMI code also
 
:$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= +1)]  = \ 0 \hspace{0.05cm},$$
 
:$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= +1)]  = \ 0 \hspace{0.05cm},$$
 
:$$ {\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= -1)]  = \ 0$$
 
:$$ {\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= -1)]  = \ 0$$
zutrifft, erhält man mit
+
is true,  
 
:$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= -1)] = \ {\rm Pr}(a_\nu = +1)\cdot {\rm Pr}(a_{\nu+1} = -1 | a_\nu = +1) = {1}/{4}\cdot{1}/{2} ={1}/{8} \hspace{0.05cm},$$
 
:$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= -1)] = \ {\rm Pr}(a_\nu = +1)\cdot {\rm Pr}(a_{\nu+1} = -1 | a_\nu = +1) = {1}/{4}\cdot{1}/{2} ={1}/{8} \hspace{0.05cm},$$
 
:$${\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= +1)] = \ {\rm Pr}(a_\nu = -1)\cdot {\rm Pr}(a_{\nu+1} = +1 | a_\nu = -1) =  {1}/{4}\cdot {1}/{2} = {1}/{8}$$
 
:$${\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= +1)] = \ {\rm Pr}(a_\nu = -1)\cdot {\rm Pr}(a_{\nu+1} = +1 | a_\nu = -1) =  {1}/{4}\cdot {1}/{2} = {1}/{8}$$
[[File:P_ID1353__Dig_A_2_7f.png|right|frame|Autokorrelationsfunktionen des AMI-Codes]]
+
[[File:P_ID1353__Dig_A_2_7f.png|right|frame|Auto-correlation functions of the AMI code]]
als Endergebnis (da die AKF stets eine gerade Funktion ist):  
+
is obtained as the final result (since the ACF is always an even function):
 
:$$\varphi_{a}(\lambda = +1) = \varphi_{a}(\lambda = –1) = –0.25.$$  
 
:$$\varphi_{a}(\lambda = +1) = \varphi_{a}(\lambda = –1) = –0.25.$$  
*Hierbei ist berücksichtigt, dass nach $a_{\nu} = +1$ mit gleicher Wahrscheinlichkeit $a_{\nu +1} = +1$ und $a_{\nu +1} = -1$ folgt.
+
*This takes into account that $a_{\nu} = +1$ is followed by $a_{\nu +1} = +1$ and $a_{\nu +1} = -1$ with equal probability.
*Damit lautet das Ergebnis:
+
*Thus, the result is:
  
 
:$$\varphi_a(\lambda = 0)\hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}, $$
 
:$$\varphi_a(\lambda = 0)\hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}, $$
Line 131: Line 131:
 
:$$\varphi_a(\lambda = 2)\hspace{0.15cm}\underline {= 0}.$$
 
:$$\varphi_a(\lambda = 2)\hspace{0.15cm}\underline {= 0}.$$
 
<br clear=all>
 
<br clear=all>
Die Grafik zeigt
+
The graph shows
*die diskrete AKF $\varphi_{a}(\lambda)$ der Amplitudenkoeffizienten und
+
*the discrete ACF $\varphi_{a}(\lambda)$ of the amplitude coefficients and
*die AKF $\varphi_{s}(\tau)$ des Sendesignals unter der Voraussetzung von NRZ–Rechteckimpulsen und AMI-Codierung.  
+
*the ACF $\varphi_{s}(\tau)$ of the transmitted signal under the condition of NRZ rectangular pulses and AMI coding.
  
  
Dabei ist die blau gezeichnete AKF $\varphi_{s}(\tau)$ das Ergebnis der (diskreten) Faltung zwischen der diskreten AKF $\varphi_{a}(\lambda)$ – rot gezeichnet und der dreieckförmigen Energie–AKF des Sendegrundimpulses.
+
Here, the ACF $\varphi_{s}(\tau)$ drawn in blue is the result of the (discrete) convolution between the discrete ACF $\varphi_{a}(\lambda)$ – drawn in red and the triangular energy ACF of the basic transmission pulse.
  
  
'''(7)'''&nbsp; Aus der angegebenen Gleichung erhält man unter Berücksichtigung der in '''(6)''' berechneten diskreten AKF-Werte
+
'''(7)'''&nbsp; From the given equation, taking into account the discrete ACF values calculated in '''(6)'''
 
:$$\varphi_{a}(\lambda = 0) = 1/2,$$  
 
:$$\varphi_{a}(\lambda = 0) = 1/2,$$  
 
:$$\varphi_{a}(|\lambda| = 1) = -1/4,$$  
 
:$$\varphi_{a}(|\lambda| = 1) = -1/4,$$  
 
:$$\varphi_{a}(|\lambda| > 1) = 0$$
 
:$$\varphi_{a}(|\lambda| > 1) = 0$$
das folgende Ergebnis:
+
we obtain the following result:
 
:$${\it \Phi}_a(f) = \ \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = \varphi_a(\lambda = 0) + 2 \cdot \varphi_a(\lambda = 1 )\cdot\cos ( 2 \pi f \hspace{0.02cm} \lambda T) = \ {1}/{2} \cdot \left [ 1 - \cos ( 2 \pi f \hspace{0.02cm} T)\right ] = \sin^2 ( \pi f \hspace{0.02cm} T) \hspace{0.05cm}.$$
 
:$${\it \Phi}_a(f) = \ \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = \varphi_a(\lambda = 0) + 2 \cdot \varphi_a(\lambda = 1 )\cdot\cos ( 2 \pi f \hspace{0.02cm} \lambda T) = \ {1}/{2} \cdot \left [ 1 - \cos ( 2 \pi f \hspace{0.02cm} T)\right ] = \sin^2 ( \pi f \hspace{0.02cm} T) \hspace{0.05cm}.$$
Insbesondere gilt:
+
In particular, holds:
 
:$${\it \Phi}_a(f = 0) \hspace{0.15cm}\underline {= 0},$$
 
:$${\it \Phi}_a(f = 0) \hspace{0.15cm}\underline {= 0},$$
 
:$${\it \Phi}_a(f = {1}/({2T})) = \sin^2 ({\pi}/{2})\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$
 
:$${\it \Phi}_a(f = {1}/({2T})) = \sin^2 ({\pi}/{2})\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$

Revision as of 20:03, 22 April 2022


Block diagram of a pseudo ternary encoder

The diagram shows the block diagram for AMI coding, assuming binary bipolar amplitude coefficients  $q_{\nu} ∈ \{–1, +1\}$  at the input. This recoding is done in two stages:

  • In the first part of the block diagram, a binary precoded symbol  $b_{\nu}$  is generated at each clock step from the modulo-2 addition of  $q_{\nu}$  and  $b_{\nu -1}$.  It holds  $b_{\nu} ∈ \{–1, +1\}.$
  • Then, the current amplitude coefficient of the ternary transmitted signal  $s(t)$  is determined by a conventional subtraction. Thereby holds:
$$a_\nu = {1}/{2} \cdot \left [ b_\nu - b_{\nu-1} \right ] \hspace{0.05cm}.$$

Due to AMI coding, it is ensured that no long "$+1$"– or "$–1$" sequences are created. Modified AMI codes have also been developed to avoid long zero sequences:

  • In the HDB3 code, four consecutive zeros each are marked by a specific violation of the AMI coding rule.
  • In the B6ZS code, six consecutive zeros are marked by a targeted violation of the AMI coding rule.


The power-spectral density  ${\it \Phi}_{a}(f)$  of the amplitude coefficients is to be obtained from the discrete ACF values  $\varphi_{a}(\lambda) = {\E}\big[a_{\nu} \cdot a_{\nu + \lambda}\big]$.  The Fourier transform in discrete representation is:

$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$




Notes:


Questions

1

At the input,  $\langle q_{\nu} \rangle = \langle +1, –1, +1, +1, –1, +1, +1, –1, –1, –1, –1, +1 \rangle$  is applied. Determine the binary precoded sequence  $\langle b_{\nu} \rangle$  with the default $b_{0} = \hspace{0.05cm}–1$.
Enter the following values as a check:

$b_{1} \hspace{0.26cm} = \ $

$b_{11} \ = \ $

$b_{12} \ = \ $

2

Furthermore, determine the sequence  $\langle a_{\nu} \rangle$  of the amplitude coefficients of the AMI-coded transmitted signal  $s(t)$.
Enter the following values to check the results:

$a_{1} \hspace{0.28cm} = \ $

$a_{11} \ = \ $

$a_{12} \ = \ $

3

Would an HDB3 or a B6ZS signal differ from the AMI code in the range under consideration  $(\text{i.e. above }12T)$? 

The HDB3 code is different from the AMI code.
The B6ZS code is different from the AMI code.

4

What are the three probabilities of occurrence in the AMI code?

${\Pr}(a_{\nu} = + 1) \ = \ $

${\Pr}(a_{\nu} = 0) \hspace{0.45cm} = \ $

${\Pr}(a_{\nu} = - 1) \ = \ $

5

Calculate the first two mean values of the amplitude coefficients.

$\E\big[a_{\nu}\big] \ = \ $

$\E\big[a_{\nu}^{2}\big] \ = \ $

6

Calculate the auto-correlation function  $\varphi_{a}(\lambda)$, in particular the following ACF values:

$\varphi_{a}(\lambda = 0) \ = \ $

$\varphi_{a}(\lambda = 1) \ = \ $

$\varphi_{a}(\lambda = 2) \ = \ $

7

What is the power-spectral density  ${\it \Phi}_{a}(f)$? What are the values for  $f = 0$  and  $f = 1/(2T)$?

${\it \Phi}_{a}(f = 0) \ = \ $

${\it \Phi}_{a}(f = 1/(2T)) \ = \ $


Solution

(1)  The modulo-2 addition can also be taken as an antivalence.

  • It is $b_{\nu} = +1$ if $q_{\nu}$ and $b_{\nu – 1}$ differ, otherwise set $b_{\nu} = -1$.
  • With the initial value $b_{0} = -1$ we obtain:
$$b_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} b_2 = +1, \hspace{0.2cm}b_3 = -1, \hspace{0.2cm}b_4 = +1, \hspace{0.2cm}b_5 = +1, \hspace{0.2cm}b_6 = -1\hspace{0.05cm},$$
$$b_7 = +1, \hspace{0.2cm} b_8 = +1, \hspace{0.2cm}b_9 = +1, \hspace{0.2cm}b_{10} = +1, \hspace{0.2cm}b_{11} \hspace{0.15cm}\underline {= +1}, \hspace{0.2cm}b_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$


(2)  AMI coding gives the following amplitude coefficients:

$$a_1\hspace{0.15cm}\underline { = +1}, \hspace{0.2cm} a_2 = 0, \hspace{0.2cm}a_3 = -1, \hspace{0.2cm}a_4 = +1, \hspace{0.2cm}a_5 = 0, \hspace{0.2cm}a_6 = -1\hspace{0.05cm},$$
$$a_7 = +1, \hspace{0.2cm} a_8 = 0, \hspace{0.2cm}a_9 = 0, \hspace{0.2cm}a_{10} = 0, \hspace{0.2cm}a_{11}\hspace{0.15cm}\underline { = 0}, \hspace{0.2cm}a_{12} \hspace{0.15cm}\underline {= -1}\hspace{0.05cm}.$$

This result is obtained by the equation $a_{\nu} = (b_{\nu} - b_{\nu –1})/2$ or by direct application of the AMI coding rule:

  • A source symbol $q_{\nu} = -1$ always leads to $a_{\nu} = 0$.
  • Source symbols $q_{\nu} = +1$ lead alternately to $a_{\nu} = +1$ and $a_{\nu} = -1$.


(3)  Solution 1 is correct:

  • The AMI code yields four consecutive zeros in the range between $\nu = 8$ and $\nu = 11$.
  • In the HDB3 code, these four symbols would be marked with "$+ 0 0 +$". Thus, the AMI rule is deliberately violated for identification purposes.
  • In contrast, the B6ZS code substitutes only zero sequences over six symbols.


(4)  Assuming equally probable binary values $±1$, we obtain ${\Pr}(a_{\nu} = 0) = {\Pr}(q_{\nu} = -1)\hspace{0.15cm}\underline{ = 1/2}$ and for symmetry reasons

${\Pr}(a_{\nu} = +1) = {\Pr}(a_{\nu} = -1) \hspace{0.15cm}\underline{ = 1/4}.$


(5)  Using the probabilities calculated in (4), we obtain:

$${\rm E}\big[a_\nu \big] = \ {1}/{4} \cdot (+1) +{1}/{2} \cdot 0+ {1}/{4} \cdot (-1)\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},$$
$$ {\rm E}\big[a_\nu^2 \big] = \ {1}/{4} \cdot (+1)^2 +{1}/{2} \cdot 0^2 + {1}/{4} \cdot (-1)^2 \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$


(6)  The ACF value at $\lambda = 0$ is equal to the root mean square of the amplitude coefficients:

$$ \varphi_a(\lambda = 0) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}.$$
  • Since the order of the AMI code is $N = 1$, for $\lambda > 1$:   $\varphi_a(\lambda > 1) = {\rm E}[a_\nu^2] \hspace{0.15cm}\underline {= 0} \hspace{0.05cm}.$
  • The ACF value $\varphi_{a}(\lambda = 1)$ must be determined by averaging:   $\varphi_a(\lambda = 1) = {\rm E}[a_\nu \cdot a_{\nu+1} \cdot {\rm Pr}(a_\nu \cap a_{\nu+1})] \hspace{0.05cm}.$
  • Of the nine possible combinations for $a_{\nu} \cdot a_{\nu +1}$, only four yield a nonzero value. In the other cases, either $a_{\nu} = 0$ or $a_{\nu +1} = 0$.


However, since in AMI code also

$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= +1)] = \ 0 \hspace{0.05cm},$$
$$ {\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= -1)] = \ 0$$

is true,

$${\rm Pr}[(a_\nu = +1) \cap (a_{\nu+1}= -1)] = \ {\rm Pr}(a_\nu = +1)\cdot {\rm Pr}(a_{\nu+1} = -1 | a_\nu = +1) = {1}/{4}\cdot{1}/{2} ={1}/{8} \hspace{0.05cm},$$
$${\rm Pr}[(a_\nu = -1) \cap (a_{\nu+1}= +1)] = \ {\rm Pr}(a_\nu = -1)\cdot {\rm Pr}(a_{\nu+1} = +1 | a_\nu = -1) = {1}/{4}\cdot {1}/{2} = {1}/{8}$$
Auto-correlation functions of the AMI code

is obtained as the final result (since the ACF is always an even function):

$$\varphi_{a}(\lambda = +1) = \varphi_{a}(\lambda = –1) = –0.25.$$
  • This takes into account that $a_{\nu} = +1$ is followed by $a_{\nu +1} = +1$ and $a_{\nu +1} = -1$ with equal probability.
  • Thus, the result is:
$$\varphi_a(\lambda = 0)\hspace{0.15cm}\underline {= 0.5} \hspace{0.05cm}, $$
$$\varphi_a(\lambda = 1)\hspace{0.15cm}\underline {= -0.25} \hspace{0.05cm},$$
$$\varphi_a(\lambda = 2)\hspace{0.15cm}\underline {= 0}.$$


The graph shows

  • the discrete ACF $\varphi_{a}(\lambda)$ of the amplitude coefficients and
  • the ACF $\varphi_{s}(\tau)$ of the transmitted signal under the condition of NRZ rectangular pulses and AMI coding.


Here, the ACF $\varphi_{s}(\tau)$ drawn in blue is the result of the (discrete) convolution between the discrete ACF $\varphi_{a}(\lambda)$ – drawn in red – and the triangular energy ACF of the basic transmission pulse.


(7)  From the given equation, taking into account the discrete ACF values calculated in (6)

$$\varphi_{a}(\lambda = 0) = 1/2,$$
$$\varphi_{a}(|\lambda| = 1) = -1/4,$$
$$\varphi_{a}(|\lambda| > 1) = 0$$

we obtain the following result:

$${\it \Phi}_a(f) = \ \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = \varphi_a(\lambda = 0) + 2 \cdot \varphi_a(\lambda = 1 )\cdot\cos ( 2 \pi f \hspace{0.02cm} \lambda T) = \ {1}/{2} \cdot \left [ 1 - \cos ( 2 \pi f \hspace{0.02cm} T)\right ] = \sin^2 ( \pi f \hspace{0.02cm} T) \hspace{0.05cm}.$$

In particular, holds:

$${\it \Phi}_a(f = 0) \hspace{0.15cm}\underline {= 0},$$
$${\it \Phi}_a(f = {1}/({2T})) = \sin^2 ({\pi}/{2})\hspace{0.15cm}\underline {= 1} \hspace{0.05cm}.$$