Difference between revisions of "Aufgaben:Exercise 1.2: A Simple Binary Channel Code"
From LNTwww
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Objective_of_Channel_Coding |
}} | }} | ||
− | [[File:EN_KC_A_1_2.png|right|frame| | + | [[File:EN_KC_A_1_2.png|right|frame|Clarification of channel (de)coding]] |
− | + | The graph illustrates the channel coding considered here $\mathcal{C}$: | |
− | * | + | *There are four possible information blocks $\underline{u} = (u_{1}, u_{2}, \text{...}\hspace{0.05cm} , u_{k})$. |
− | * | + | *Each information block $\underline{u}$ is uniquely assigned (recognizable by the same color) to the codeword $\underline{x}= (x_{1}, x_{2}, \text{...}\hspace{0.05cm} , x_{n})$ . |
− | * | + | *Due to decoding errors $(0 → 1, \ 1 → 0)$ there are more than 4, namely 16 different receive words $\underline{y} = (y_{1}, y_{2}, \text{...} \hspace{0.05cm} , y_{n})$. |
− | + | From subtask '''(4)''' we consider the following mapping: | |
:$$\underline{u_0} = (0, 0) \leftrightarrow (0, 0, 0, 0) = \underline{x_0}\hspace{0.05cm},$$ | :$$\underline{u_0} = (0, 0) \leftrightarrow (0, 0, 0, 0) = \underline{x_0}\hspace{0.05cm},$$ | ||
:$$\underline{u_1} = (0, 1) \leftrightarrow (0, 1, 0, 1) = \underline{x_1}\hspace{0.05cm},$$ | :$$\underline{u_1} = (0, 1) \leftrightarrow (0, 1, 0, 1) = \underline{x_1}\hspace{0.05cm},$$ | ||
Line 20: | Line 20: | ||
− | + | Hints: | |
− | * | + | *This exercise belongs to the chapter [[Channel_Coding/Objective_of_Channel_Coding|Obective of Channel Coding]] |
− | * | + | *Reference is made in particular to the pages |
− | ::[[Channel_Coding/ | + | ::[[Channel_Coding/Objective_of_Channel_Coding#Block_diagram_and_requirements|Block diagram and requirements]], |
− | ::[[Channel_Coding/ | + | ::[[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|Important definitions for block coding]]. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {How many binary symbols does an information block consist of? |
|type="{}"} | |type="{}"} | ||
$k \ = \ $ { 2 } | $k \ = \ $ { 2 } | ||
− | { | + | {What is the codeword length $n$? |
|type="{}"} | |type="{}"} | ||
$n \ = \ $ { 4 } | $n \ = \ $ { 4 } | ||
− | { | + | {What is the code rate? |
|type="{}"} | |type="{}"} | ||
$R \ = \ $ { 0.5 3% } | $R \ = \ $ { 0.5 3% } | ||
− | { | + | {Is the code given here systematic? |
|type="()"} | |type="()"} | ||
− | + | + | + Yes, |
− | - | + | - No. |
− | { | + | {Give the Hamming weights of all code words. |
|type="{}"} | |type="{}"} | ||
− | $ w_{\rm H} \ | + | $ w_{\rm H} \ (\underline{x}_0) \ = \ $ { 0. } |
− | $ w_{\rm H} \ | + | $ w_{\rm H} \ (\underline{x}_1) \ = \ $ { 2 } |
− | $ w_{\rm H} \ | + | $ w_{\rm H} \ (\underline{x}_2) \ = \ $ { 2 } |
− | $ w_{\rm H} \ | + | $ w_{\rm H} \ (\underline{x}_3) \ = \ $ { 4 } |
− | { | + | {Indicate the Hamming distances between the following code words. |
|type="{}"} | |type="{}"} | ||
− | $ d_{\rm H} \ | + | $ d_{\rm H} \ (\underline{x}_0, \underline{x}_1) \ = \ $ { 2 } |
− | $ d_{\rm H} \ | + | $ d_{\rm H} \ (\underline{x}_0, \underline{x}_3) \ = \ $ { 4 } |
− | $ d_{\rm H} \ | + | $ d_{\rm H} \ (\underline{x}_1, \underline{x}_2) \ = \ $ { 4 } |
− | { | + | {What is the minimum Hamming distance of the code under consideration $\mathcal{C}$? |
|type="{}"} | |type="{}"} | ||
− | $ d_{\rm min} | + | $ d_{\rm min} (\mathcal{C}) \ = \ $ { 2 } |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The code size here is given to $|\mathcal{C}| = 4$. |
− | * | + | *In general, $|\mathcal{C}|= 2^k$. |
− | * | + | *From this follows $\underline{ k = 2}$. |
− | '''(2)''' | + | '''(2)''' Each codeword $\underline{x}$ is uniquely associated with an information block $\underline{u}$. |
− | * | + | *By corruptions of single of the total $n$ bits of a codeword $\underline{x}$ the receive words $\underline{y}$ result. |
− | * | + | *From the number $(16 = 2^4$) of possible receive words follows $\underline{ n = 4}$. |
− | '''(3)''' | + | '''(3)''' The code rate is by definition $R = k/n$. |
− | * | + | *Using the above results, we obtain $\underline{R = 0.5}$. |
− | '''(4)''' | + | '''(4)''' Correct <u>Yes</u>: |
− | * | + | *A systematic code is characterized by the fact that in each case the first $k$ bits of the code words are identical to the information block. |
− | '''(5)''' | + | '''(5)''' The Hamming weight of a binary code is equal to the algebraic sum $x_1 + x_2 + \text{...} + x_n$ over all code word elements. Thus: |
:$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$ | :$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$ | ||
− | '''(6)''' | + | '''(6)''' The Hamming distance between two codewords here can only take the values $2$ and $4$: |
:$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$ | :$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$ | ||
Line 104: | Line 104: | ||
− | '''(7)''' | + | '''(7)''' From the result of subtask (6) it follows $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$. |
− | * | + | *Generally, for this quantity: |
− | :$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} | + | :$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$ |
Revision as of 17:06, 4 June 2022
The graph illustrates the channel coding considered here $\mathcal{C}$:
- There are four possible information blocks $\underline{u} = (u_{1}, u_{2}, \text{...}\hspace{0.05cm} , u_{k})$.
- Each information block $\underline{u}$ is uniquely assigned (recognizable by the same color) to the codeword $\underline{x}= (x_{1}, x_{2}, \text{...}\hspace{0.05cm} , x_{n})$ .
- Due to decoding errors $(0 → 1, \ 1 → 0)$ there are more than 4, namely 16 different receive words $\underline{y} = (y_{1}, y_{2}, \text{...} \hspace{0.05cm} , y_{n})$.
From subtask (4) we consider the following mapping:
- $$\underline{u_0} = (0, 0) \leftrightarrow (0, 0, 0, 0) = \underline{x_0}\hspace{0.05cm},$$
- $$\underline{u_1} = (0, 1) \leftrightarrow (0, 1, 0, 1) = \underline{x_1}\hspace{0.05cm},$$
- $$\underline{u_2} = (1, 0) \leftrightarrow (1, 0, 1, 0) = \underline{x_2}\hspace{0.05cm},$$
- $$\underline{u_3} = (1, 1) \leftrightarrow (1, 1, 1, 1) = \underline{x_3}\hspace{0.05cm}.$$
Hints:
- This exercise belongs to the chapter Obective of Channel Coding
- Reference is made in particular to the pages
Questions
Solution
(1) The code size here is given to $|\mathcal{C}| = 4$.
- In general, $|\mathcal{C}|= 2^k$.
- From this follows $\underline{ k = 2}$.
(2) Each codeword $\underline{x}$ is uniquely associated with an information block $\underline{u}$.
- By corruptions of single of the total $n$ bits of a codeword $\underline{x}$ the receive words $\underline{y}$ result.
- From the number $(16 = 2^4$) of possible receive words follows $\underline{ n = 4}$.
(3) The code rate is by definition $R = k/n$.
- Using the above results, we obtain $\underline{R = 0.5}$.
(4) Correct Yes:
- A systematic code is characterized by the fact that in each case the first $k$ bits of the code words are identical to the information block.
(5) The Hamming weight of a binary code is equal to the algebraic sum $x_1 + x_2 + \text{...} + x_n$ over all code word elements. Thus:
- $$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$
(6) The Hamming distance between two codewords here can only take the values $2$ and $4$:
- $$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
- $$ d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_2) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_2, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}.$$
(7) From the result of subtask (6) it follows $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.
- Generally, for this quantity:
- $$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$