Difference between revisions of "Aufgaben:Exercise 4.2Z: Eight-level Phase Shift Keying"

From LNTwww
Line 21: Line 21:
 
where  $a_i$  are complex dimensionless coefficients and the energy of the basic transmission pulse  $g_s(t)$  is  $E_{\it g_s}$  in the low-pass region. In the case shown here,   $g_s(t)$  describes a rectangular pulse, but any other energy-limited pulse can be used for  $g_s(t)$.   
 
where  $a_i$  are complex dimensionless coefficients and the energy of the basic transmission pulse  $g_s(t)$  is  $E_{\it g_s}$  in the low-pass region. In the case shown here,   $g_s(t)$  describes a rectangular pulse, but any other energy-limited pulse can be used for  $g_s(t)$.   
  
The graph shows the signal space representation of the 8–PSK für das Bandpass–Signal (oben) sowie für das äquivalente Tiefpass–Signal (unten):  
+
The graph shows the signal space representation of the 8–PSK for the band-pass signal (top) and for the equivalent low-pass signal (bottom):
*Man erkennt daraus, dass sich die beiden Darstellungen nur duch die verwendeten Basisfunktionen unterscheiden, wobei  $\varphi_1(t)$  in der oberen und der unteren Grafik für unterschiedliche Funktionen steht.  
+
*It can be seen from this that the two representations differ only in the basis functions used, with  $\varphi_1(t)$  representing different functions in the upper and lower graphs.
*In der Tiefpassdarstellung gilt  $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$.
+
*In the low-pass representation,  $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$ holds.
  
  
Line 30: Line 30:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 
   
 
   
* Verwenden Sie zur Abkürzung die Energie  $E = 1/2 \cdot A^2 \cdot T$.  
+
* For abbreviation, use the energy  $E = 1/2 \cdot A^2 \cdot T$.  
* Im Gegensatz zum Theorieteil und zur  [[Aufgaben:4.2_AM/PM-Schwingungen| Aufgabe 4.2]]  kann hier die Laufvariable  $i$  die Werte  $0, \ \text{...} \, ,M-1$  annehmen.
+
* In contrast to the theory section and  [[Aufgaben:Exercise_4.2:_AM/PM_Oscillations|"Exercise 4.2"]],  here the indexing variable  $i$  can take the values  $0, \ \text{...} \, ,M-1$.   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Koeffizienten des Signals&nbsp; $s_0(t)$?
+
{What are the coefficients of the signal&nbsp; $s_0(t)$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 01} \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 01} \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 02} \ = \ $ { 0. } $\ \cdot \sqrt{E}$
 
$s_{\rm 02} \ = \ $ { 0. } $\ \cdot \sqrt{E}$
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_2(t)$?
+
{What are the coefficients of the signal&nbsp; $s_2(t)$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 21} \ = \ $ { 0. } $\ \cdot \sqrt{E}$
 
$s_{\rm 21} \ = \ $ { 0. } $\ \cdot \sqrt{E}$
 
$s_{\rm 22} \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
 
$s_{\rm 22} \ = \ $ { 1 3% } $\ \cdot \sqrt{E}$
  
{Wie lauten die Koeffizienten des Signals&nbsp; $s_5(t)$?
+
{What are the coefficients of the signal&nbsp; $s_5(t)$?
 
|type="{}"}
 
|type="{}"}
 
$s_{\rm 51} \ = \ $ { -0.72821--0.68579 } $\ \cdot \sqrt{E}$
 
$s_{\rm 51} \ = \ $ { -0.72821--0.68579 } $\ \cdot \sqrt{E}$
 
$s_{\rm 52} \ = \ $ { -0.72821--0.68579 } $\ \cdot \sqrt{E}$
 
$s_{\rm 52} \ = \ $ { -0.72821--0.68579 } $\ \cdot \sqrt{E}$
  
{Durch welche Basisfunktionen sind die Tiefpass&ndash;Signale&nbsp; $s_{\rm TP \it i}(t)$&nbsp; darstellbar? Durch
+
{By which basis functions can the low&ndash;pass signals&nbsp; $s_{\rm TP \it i}(t)$&nbsp; be represented? By
 
|type="[]"}
 
|type="[]"}
+ eine komplexe Basisfunktion&nbsp; $\xi_1(t)$,
+
+ one complex basis function&nbsp; $\xi_1(t)$,
- zwei komplexe Basisfunktionen&nbsp; $\xi_1(t)$&nbsp; und &nbsp;$\xi_2(t)$,
+
- two complex basis functions&nbsp; $\xi_1(t)$&nbsp; and &nbsp;$\xi_2(t)$,
+ zwei reelle Funktionen&nbsp; $\varphi_1(t)$&nbsp; und &nbsp;$\psi_1(t)$.
+
+ two real functions&nbsp; $\varphi_1(t)$&nbsp; and &nbsp;$\psi_1(t)$.
  
{Wie lauten im vorliegenden Fall die reellen Basisfunktionen?
+
{What are the real basis functions in the present case?
 
|type="[]"}
 
|type="[]"}
 
- $\varphi_1(t) = g_s(t)$,
 
- $\varphi_1(t) = g_s(t)$,
Line 68: Line 68:
 
- $\psi_1(t) = {\rm j} \cdot \varphi_1(t)$.
 
- $\psi_1(t) = {\rm j} \cdot \varphi_1(t)$.
  
{Es gelte&nbsp; $s_{\rm TP0}(t) = \sqrt{E}$. Was trifft zu:
+
{Let&nbsp; $s_{\rm TP0}(t) = \sqrt{E}$. Which is true:
 
|type="()"}
 
|type="()"}
- Die Energie&nbsp; $E$&nbsp; bezieht sich auf das Tiefpass&ndash;Signal.
+
- The energy&nbsp; $E$&nbsp; refers to the low&ndash;pass signal.
+ Die Energie&nbsp; $E$&nbsp; bezieht sich auf das Bandpass&ndash;Signal.
+
+ The energy&nbsp; $E$&nbsp; refers to the band&ndash;pass signal.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Signal $s_0(t)$ lautet:
+
'''(1)'''&nbsp; The signal $s_0(t)$ is:
 
:$$s_0(t)=  A \cdot \cos(2\pi f_{\rm T}t ) = s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm}.$$
 
:$$s_0(t)=  A \cdot \cos(2\pi f_{\rm T}t ) = s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  
*Da dieses Signal keinen Sinusteil aufweist, ist $s_{\rm 02} \hspace{0.15cm}\underline {= 0}$.  
+
*Since this signal has no sinusoidal part, $s_{\rm 02} \hspace{0.15cm}\underline {= 0}$.  
*Weiter gilt mit der angegebenen Abkürzung:
+
*Further, with the given abbreviation:
 
:$$A = s_{01} \cdot \sqrt{{2}/{T}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$A = s_{01} \cdot \sqrt{{2}/{T}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
s_{01}=\sqrt{1/2 \cdot A^2 \cdot T} =  \sqrt{E}\hspace{0.05cm} \hspace{0.15cm}\underline { = 1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
 
s_{01}=\sqrt{1/2 \cdot A^2 \cdot T} =  \sqrt{E}\hspace{0.05cm} \hspace{0.15cm}\underline { = 1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Das Signal $s_2(t)$ lautet mit $i = 2$ (beachten Sie, dass die zweite Basisfunktion minus&ndash;sinusförmig ist):
+
'''(2)'''&nbsp; The signal $s_2(t)$ is with $i = 2$ (note that the second basis function is minus&ndash;sine):
 
:$$s_2(t)=  A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{2})= -  A \cdot \sin(2\pi f_{\rm T}t )\hspace{0.3cm}
 
:$$s_2(t)=  A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{2})= -  A \cdot \sin(2\pi f_{\rm T}t )\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} s_{21}\hspace{0.05cm} \underline{= 0}\hspace{0.05cm}, \hspace{0.2cm} s_{22}=  \sqrt{E}  \hspace{0.05cm} \hspace{0.15cm}\underline {=1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm} s_{21}\hspace{0.05cm} \underline{= 0}\hspace{0.05cm}, \hspace{0.2cm} s_{22}=  \sqrt{E}  \hspace{0.05cm} \hspace{0.15cm}\underline {=1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Entsprechend den Musterlösungen zu den Teilaufgaben '''(1)''' und '''(2)''' gilt nun:
+
'''(3)'''&nbsp; According to the solutions to subtasks '''(1)''' and '''(2)''', the following is now true:
 
:$$s_{51}= s_{52}= - \sqrt{E/2} \hspace{0.05cm} \hspace{0.15cm}\underline { = -0.707 \cdot E^{\hspace{0.05cm}0.5}}$$
 
:$$s_{51}= s_{52}= - \sqrt{E/2} \hspace{0.05cm} \hspace{0.15cm}\underline { = -0.707 \cdot E^{\hspace{0.05cm}0.5}}$$
:$$\Rightarrow \hspace{0.3cm} s_{5}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  - {A}/{ \sqrt{2}} \cdot \cos(2\pi f_{\rm T}t ) - {A}/{ \sqrt{2}} \cdot \sin(2\pi f_{\rm T}t )=A \cdot \cos(2\pi f_{\rm T}t + \phi_5)\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\phi_5 = -0.75 \cdot \pi
+
:$$\Rightarrow \hspace{0.3cm} s_{5}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  - {A}/{ \sqrt{2}} \cdot \cos(2\pi f_{\rm T}t ) - {A}/{ \sqrt{2}} \cdot \sin(2\pi f_{\rm T}t )=A \cdot \cos(2\pi f_{\rm T}t + \phi_5)\hspace{0.2cm}{\rm with}\hspace{0.2cm}\phi_5 = -0.75 \cdot \pi
\hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}\phi_5 = 1.25 \cdot \pi
+
\hspace{0.2cm}{\rm and}\hspace{0.2cm}\phi_5 = 1.25 \cdot \pi
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>.  
+
'''(4)'''&nbsp; <u>Solutions 1 and 3</u> are correct.  
*Dabei gilt folgender Zusammenhang: &nbsp;  
+
*The following relation holds: &nbsp;  
 
:$$\xi_1 (t) = \varphi_1 (t) + {\rm j} \cdot \psi_1 (t)\hspace{0.05cm}.$$
 
:$$\xi_1 (t) = \varphi_1 (t) + {\rm j} \cdot \psi_1 (t)\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Richtig sind die <u>Alternativen 2 und 3</u>:  
+
'''(5)'''&nbsp; Correct are the <u>alternatives 2 and 3</u>:  
*Die Basisfunktion muss energienormiert sein.
+
*The basis function must be energy normalized.
* $\psi_1(t)$ ist wie $\varphi_1(t)$ eine reelle, nicht etwa eine imaginäre Funktion:
+
* Like $\psi_1(t)$, $\varphi_1(t)$ is a real function, not an imaginary one:
 
:$$\varphi_1 (t) = \psi_1 (t) =
 
:$$\varphi_1 (t) = \psi_1 (t) =
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
\left\{ \begin{array}{c} 1/\sqrt{T} \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
 
\begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm},
\\  {\rm sonst}\hspace{0.05cm}. \\ \end{array}$$
+
\\  {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$
  
  
'''(6)'''&nbsp; Aus dem Tiefpass&ndash;Signal $s_{\rm TP0}(t)$ kann man auch das Bandpass&ndash;Signal $s_0(t)$ berechnen.  
+
'''(6)'''&nbsp; From the low&ndash;pass signal $s_{\rm TP0}(t)$, one can also calculate the band-pass signal $s_0(t)$.  
*Im Bereich $0 &#8804; t &#8804; T$ erhält man mit dem Ergebnis aus '''(5)''' das gleiche Ergebnis wie in der Teilaufgabe '''(1)''' :
+
*In the range $0 &#8804; t &#8804; T$, the result from '''(5)''' gives the same result as in subtask '''(1)''' :
 
:$$s_0(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\left[s_{{\rm TP}0}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right]
 
:$$s_0(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\left[s_{{\rm TP}0}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right]
 
  = {\rm Re}\left[\sqrt{E} /{\sqrt{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right]=  \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t )
 
  = {\rm Re}\left[\sqrt{E} /{\sqrt{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right]=  \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t )
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
  
*Daraus folgt: Die Energie $E$ bezieht sich auch bei Betrachtung im äquivalenten Tiefpass&ndash;Bereich auf das Bandpass&ndash;Signal.
+
*It follows: The energy $E$ refers to the band&ndash;pass signal even when considered in the equivalent low&ndash;pass region.
  
*Entsprechend gilt für das mit blauem Punkt markierte Signal $s_2(t)$ im interessierenden Bereich:
+
*Accordingly, for the signal $s_2(t)$ marked with blue dot in the region of interest:
 
:$$s_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big]
 
:$$s_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big]
 
  = {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t)- \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \big]
 
  = {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t)- \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \big]
Line 126: Line 126:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Schließlich kann für das (grüne) Signal $s_5(t)$ im Bereich $0 &#8804; t < T$ geschrieben werden:
+
*Finally, for the (green) signal $s_5(t)$ in the range $0 &#8804; t < T$ can be written:
 
:$$s_5(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\frac{-1 - {\rm j}}{\sqrt{2}} \cdot \sqrt{{E}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big] = \text{...}  
 
:$$s_5(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\frac{-1 - {\rm j}}{\sqrt{2}} \cdot \sqrt{{E}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big] = \text{...}  
 
  =  - \sqrt{\frac{E}{2T}} \cdot \cos(2\pi f_{\rm T}t)+ \sqrt{\frac{E}{2T}} \cdot \sin(2\pi f_{\rm T}t)=\sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t + 1.25 \cdot \pi)
 
  =  - \sqrt{\frac{E}{2T}} \cdot \cos(2\pi f_{\rm T}t)+ \sqrt{\frac{E}{2T}} \cdot \sin(2\pi f_{\rm T}t)=\sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t + 1.25 \cdot \pi)
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Auch diese Ergebnisse stimmen mit denen der Teilaufgaben '''(2)''' bzw. '''(3)''' überein. Zutreffend ist also der <u>Lösungsvorschlag 2</u>.
+
*These results also agree with those of subtasks '''(2)''' and '''(3)''', respectively. Therefore,  <u>solution 2</u> is correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 20:51, 14 June 2022

Signal space points at 8-PSK

The  $M = 8$  possible transmitted signals at 8–PSK are with  $i = 0, \ \text{...} \ , 7$  in the range  $0 ≤ t < T$:

$$s_i(t)= A \cdot \cos(2\pi f_{\rm T}t + i \cdot {\pi}/{4}) \hspace{0.05cm}.$$

Outside the symbol duration  $T$,  the signals  $s_i(t)$  are all zero.

In   "Exercise 4.2"  it was shown that this signal set is given by the basis functions

$$\varphi_1(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{{2}/{T}} \cdot \cos(2\pi f_{\rm T}t )\hspace{0.05cm},$$
$$\varphi_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - \sqrt{{2}/{T}} \cdot \sin(2\pi f_{\rm T}t )\hspace{0.05cm}$$

which can be represented as follows  $(i = 0, \ \text{...} \ , 7)$:

$$s_i(t)= s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) \hspace{0.05cm}.$$

The equivalent low-pass representation of the signals  $s_i(t)$  is according to the section  "System description using the equivalent low-pass signal"  of the book "Modulation methods":

$$s_{{\rm TP}i}(t)= a_{i} \cdot g_s(t) \hspace{0.05cm}, \hspace{0.2cm}a_{i} = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i} \hspace{0.05cm}, \hspace{0.2cm}i = 0,\text{...} \hspace{0.1cm} , 7 \hspace{0.05cm},$$

where  $a_i$  are complex dimensionless coefficients and the energy of the basic transmission pulse  $g_s(t)$  is  $E_{\it g_s}$  in the low-pass region. In the case shown here,   $g_s(t)$  describes a rectangular pulse, but any other energy-limited pulse can be used for  $g_s(t)$. 

The graph shows the signal space representation of the 8–PSK for the band-pass signal (top) and for the equivalent low-pass signal (bottom):

  • It can be seen from this that the two representations differ only in the basis functions used, with  $\varphi_1(t)$  representing different functions in the upper and lower graphs.
  • In the low-pass representation,  $\varphi_2(t) = {\rm j} \cdot \varphi_1(t)$ holds.




Notes:

  • For abbreviation, use the energy  $E = 1/2 \cdot A^2 \cdot T$.
  • In contrast to the theory section and  "Exercise 4.2",  here the indexing variable  $i$  can take the values  $0, \ \text{...} \, ,M-1$. 


Questions

1

What are the coefficients of the signal  $s_0(t)$?

$s_{\rm 01} \ = \ $

$\ \cdot \sqrt{E}$
$s_{\rm 02} \ = \ $

$\ \cdot \sqrt{E}$

2

What are the coefficients of the signal  $s_2(t)$?

$s_{\rm 21} \ = \ $

$\ \cdot \sqrt{E}$
$s_{\rm 22} \ = \ $

$\ \cdot \sqrt{E}$

3

What are the coefficients of the signal  $s_5(t)$?

$s_{\rm 51} \ = \ $

$\ \cdot \sqrt{E}$
$s_{\rm 52} \ = \ $

$\ \cdot \sqrt{E}$

4

By which basis functions can the low–pass signals  $s_{\rm TP \it i}(t)$  be represented? By

one complex basis function  $\xi_1(t)$,
two complex basis functions  $\xi_1(t)$  and  $\xi_2(t)$,
two real functions  $\varphi_1(t)$  and  $\psi_1(t)$.

5

What are the real basis functions in the present case?

$\varphi_1(t) = g_s(t)$,
$\varphi_1(t) = g_s(t)/\sqrt{E_{\rm g_s}}$,
$\psi_1(t) = \varphi_1(t)$,
$\psi_1(t) = {\rm j} \cdot \varphi_1(t)$.

6

Let  $s_{\rm TP0}(t) = \sqrt{E}$. Which is true:

The energy  $E$  refers to the low–pass signal.
The energy  $E$  refers to the band–pass signal.


Solution

(1)  The signal $s_0(t)$ is:

$$s_0(t)= A \cdot \cos(2\pi f_{\rm T}t ) = s_{01} \cdot \varphi_1(t) + s_{02} \cdot \varphi_2(t) \hspace{0.05cm}.$$
  • Since this signal has no sinusoidal part, $s_{\rm 02} \hspace{0.15cm}\underline {= 0}$.
  • Further, with the given abbreviation:
$$A = s_{01} \cdot \sqrt{{2}/{T}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} s_{01}=\sqrt{1/2 \cdot A^2 \cdot T} = \sqrt{E}\hspace{0.05cm} \hspace{0.15cm}\underline { = 1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$


(2)  The signal $s_2(t)$ is with $i = 2$ (note that the second basis function is minus–sine):

$$s_2(t)= A \cdot \cos(2\pi f_{\rm T}t + {\pi}/{2})= - A \cdot \sin(2\pi f_{\rm T}t )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{21}\hspace{0.05cm} \underline{= 0}\hspace{0.05cm}, \hspace{0.2cm} s_{22}= \sqrt{E} \hspace{0.05cm} \hspace{0.15cm}\underline {=1 \cdot E^{\hspace{0.05cm}0.5}}\hspace{0.05cm}.$$


(3)  According to the solutions to subtasks (1) and (2), the following is now true:

$$s_{51}= s_{52}= - \sqrt{E/2} \hspace{0.05cm} \hspace{0.15cm}\underline { = -0.707 \cdot E^{\hspace{0.05cm}0.5}}$$
$$\Rightarrow \hspace{0.3cm} s_{5}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} - {A}/{ \sqrt{2}} \cdot \cos(2\pi f_{\rm T}t ) - {A}/{ \sqrt{2}} \cdot \sin(2\pi f_{\rm T}t )=A \cdot \cos(2\pi f_{\rm T}t + \phi_5)\hspace{0.2cm}{\rm with}\hspace{0.2cm}\phi_5 = -0.75 \cdot \pi \hspace{0.2cm}{\rm and}\hspace{0.2cm}\phi_5 = 1.25 \cdot \pi \hspace{0.05cm}.$$


(4)  Solutions 1 and 3 are correct.

  • The following relation holds:  
$$\xi_1 (t) = \varphi_1 (t) + {\rm j} \cdot \psi_1 (t)\hspace{0.05cm}.$$


(5)  Correct are the alternatives 2 and 3:

  • The basis function must be energy normalized.
  • Like $\psi_1(t)$, $\varphi_1(t)$ is a real function, not an imaginary one:
$$\varphi_1 (t) = \psi_1 (t) = \left\{ \begin{array}{c} 1/\sqrt{T} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le t < T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$


(6)  From the low–pass signal $s_{\rm TP0}(t)$, one can also calculate the band-pass signal $s_0(t)$.

  • In the range $0 ≤ t ≤ T$, the result from (5) gives the same result as in subtask (1) :
$$s_0(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\left[s_{{\rm TP}0}(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right] = {\rm Re}\left[\sqrt{E} /{\sqrt{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \right]= \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t ) \hspace{0.05cm},$$
  • It follows: The energy $E$ refers to the band–pass signal even when considered in the equivalent low–pass region.
  • Accordingly, for the signal $s_2(t)$ marked with blue dot in the region of interest:
$$s_2(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big] = {\rm Re}\big[\hspace{0.05cm}{\rm j} \cdot \sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t)- \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \big] = - \sqrt{E/T} \cdot \sin(2\pi f_{\rm T}t) \hspace{0.05cm}.$$
  • Finally, for the (green) signal $s_5(t)$ in the range $0 ≤ t < T$ can be written:
$$s_5(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Re}\big[\frac{-1 - {\rm j}}{\sqrt{2}} \cdot \sqrt{{E}/{T}} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}2\pi f_{\rm T}t} \big] = \text{...} = - \sqrt{\frac{E}{2T}} \cdot \cos(2\pi f_{\rm T}t)+ \sqrt{\frac{E}{2T}} \cdot \sin(2\pi f_{\rm T}t)=\sqrt{E/T} \cdot \cos(2\pi f_{\rm T}t + 1.25 \cdot \pi) \hspace{0.05cm}.$$
  • These results also agree with those of subtasks (2) and (3), respectively. Therefore, solution 2 is correct.