Difference between revisions of "Aufgaben:Exercise 1.07Z: Classification of Block Codes"

From LNTwww
Line 51: Line 51:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lässt sich "Code 5" beschreiben?
+
{How can "Code 5" be described?
 
|type="[]"}
 
|type="[]"}
+ In jedem Codewort sind genau zwei Nullen enthalten.
+
+ There are exactly two zeros in each codeword.
+ In jedem Codewort sind genau zwei Einsen enthalten.
+
+ There are exactly two ones in each codeword.
- Nach jeder $0$ sind die Symbole&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; gleichwahrscheinlich.
+
- After each $0$, the symbols&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; are equally likely.
  
{Welche der folgenden Blockcodes sind linear?
+
{Which of the following block codes are linear?
 
|type="[]"}
 
|type="[]"}
+ Code 1,
+
+ code 1,
+ Code 2,
+
+ code 2,
+ Code 3,
+
+ code 3,
+ Code 4,
+
+ code 4,
- Code 5.
+
- code 5.
  
{Welche der folgenden Blockcodes sind systematisch?
+
{Which of the following block codes are systematic?
 
|type="[]"}
 
|type="[]"}
+ Code 1,
+
+ code 1,
+ Code 2,
+
+ code 2,
+ Code 3,
+
+ code 3,
- Code 4,
+
- code 4,
- Code 5.
+
- code 5.
  
{Welche Codepaare sind zueinander dual?
+
{Which code pairs are dual to each other?
 
|type="[]"}
 
|type="[]"}
+ Code 1 und Code 2,
+
+ code 1 and code 2,
- Code 2 und Code 3,
+
- code 2 and code 3,
- Code 3 und Code 4.
+
- code 3 and code 4.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Aussagen 1 und 2</u>:
+
'''(1)'''&nbsp; <u>Statements 1 and 2</u> are correct:
* Deshalb gibt es auch $\rm 4 \ über \ 2 = 6$ Codeworte.  
+
* That is why there are $\rm 4 \ over \ 2 = 6$ codewords.  
* Aussage 3 ist falsch. Ist zum Beispiel das erste Bit $0$, so gibt es ein Codewort mit dem Beginn $00$ und zwei Codeworte, die mit $01$ beginnen.
+
* Statement 3 is false. For example, if the first bit is $0$, there is one codeword starting $00$ and two codewords starting $01$.
  
  
  
'''(2)'''&nbsp; Richtig sind die <u>Aussagen 1 bis 4</u>:
+
'''(2)'''&nbsp; <u>Statements 1 to 4</u> are correct:
* Alle Codes, die durch eine Generatormatrix $\boldsymbol {\rm G}$ und/oder eine Prüfmatrix $\boldsymbol {\rm H}$ beschrieben werden können, sind linear.  
+
* All codes that can be described by a generator matrix $\boldsymbol {\rm G}$ and/or a parity-check matrix $\boldsymbol {\rm H}$ are linear.  
*Dagegen erfüllt "Code 5" keine der für lineare Codes erforderlichen Bedingungen. Beispielsweise
+
*In contrast, "Code 5" does not satisfy any of the conditions required for linear codes. For example
  
:*fehlt das Nullwort,
+
:*is missing the all zero word,
:*ist der Codeumfang $|\mathcal{C}|$ keine Zweierpotenz,
+
:*the code cardinality $|\mathcal{C}|$ is not a power of two,
:*ergibt $(0, 1, 0, 1) \oplus (1, 0, 1, 0) = (1, 1, 1, 1)$ kein gültiges Codewort.
+
:*gives $(0, 1, 0, 1) \oplus (1, 0, 1, 0) = (1, 1, 1, 1)$ no valid codeword.
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>Aussagen 1 bis 3</u>:
+
'''(3)'''&nbsp; <u>Statements 1 to 3</u> are correct:
*Bei einem systematischen Code müssen stets die ersten $k$ Bit eines jeden Codewortes $\underline{x}$ gleich dem Informationswort $\underline{u}$ sein.  
+
*In a systematic code, the first $k$ bits of each codeword $\underline{x}$ must always be equal to the information word $\underline{u}$.  
*Dies wird erreicht, wenn der Beginn der Generatormatrix $\boldsymbol {\rm G}$ eine Einheitsmatrix $\boldsymbol{\rm I}_{k}$ darstellt.  
+
*This is achieved if the beginning of the generator matrix $\boldsymbol {\rm G}$ is a unit matrix $\boldsymbol{\rm I}_{k}$.  
*Dies trifft für "Code 1" (mit Dimension $k = 3$), "Code 2" (mit $k = 1$) und "Code 3" (mit $k = 2$) zu.
+
*This is true for "Code 1" (with dimension $k = 3$), "Code 2" (with $k = 1$) and "code 3" (with $k = 2$).
*Die Generatormatrix von "Code 2" ist allerdings nicht explizit angegeben. Sie lautet:
+
*The generator matrix of "Code 2", however, is not explicitly stated. It is:
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Richtig ist die <u>Aussage 1</u>:
+
'''(4)'''&nbsp; <u>Statement 1</u> is correct:
*Von dualen Codes spricht man, wenn die Prüfmatrix $\boldsymbol {\rm H}$ des einen Codes gleich der Generatormatrix $\boldsymbol {\rm G}$ des anderen Codes ist.  
+
*Dual codes are those where the parity-check matrix $\boldsymbol {\rm H}$ of one code is equal to the generator matrix $\boldsymbol {\rm G}$ of the other code.  
*Dies trifft zum Beispiel für "Code 1" und "Code 2" zu.
+
*For example, this is true for "Code 1" and "Code 2."  
*Für den SPC (4, 3) gilt:
+
*For the SPC (4, 3) holds:
  
 
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
 
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  
:und für den Wiederholungscode RC (4, 1):
+
:and for the repetition code RC (4, 1):
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
*Aussage 2 ist mit Sicherheit falsch, schon aus Dimensionsgründen: Die Generatormatrix $\boldsymbol {\rm G}$ von "Code 3" ist eine $2×4$–Matrix und die Prüfmatrix $\boldsymbol {\rm H}$ von "Code 2" eine $3×4$–Matrix.
+
*Statement 2 is certainly wrong, already for dimensional reasons: The generator matrix $\boldsymbol {\rm G}$ of "Code 3" is a $2×4$ matrix and the parity-check matrix $\boldsymbol {\rm H}$ of "Code 2" is a $3×4$ matrix.
  
*"Code 3" und "Code 4" erfüllen ebenfalls nicht die Bedingungen dualer Codes. Die Prüfgleichungen von
+
*"Code 3" and "Code 4" also do not satisfy the conditions of dual codes. The parity-check equations of
  
 
:$${\rm Code}\hspace{0.15cm}3 = \{ (0, 0, 0, 0) \hspace{0.05cm},\hspace{0.1cm} (0, 1, 1, 0) \hspace{0.05cm},\hspace{0.1cm}(1, 0, 0, 1) \hspace{0.05cm},\hspace{0.1cm}(1, 1, 1, 1) \}$$
 
:$${\rm Code}\hspace{0.15cm}3 = \{ (0, 0, 0, 0) \hspace{0.05cm},\hspace{0.1cm} (0, 1, 1, 0) \hspace{0.05cm},\hspace{0.1cm}(1, 0, 0, 1) \hspace{0.05cm},\hspace{0.1cm}(1, 1, 1, 1) \}$$
  
:lauten:
+
:are as follows:
  
 
:$$x_1 \oplus x_4 = 0\hspace{0.05cm},\hspace{0.2cm}x_2 \oplus x_3 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$
 
:$$x_1 \oplus x_4 = 0\hspace{0.05cm},\hspace{0.2cm}x_2 \oplus x_3 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$
  
:Dagegen ist die Generatormatrix von "Code 4" wie folgt gegeben:
+
:In contrast, the generator matrix of "Code 4" is given as follows:
  
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$

Revision as of 22:18, 30 June 2022

Block codes of length  $n = 4$

We consider block codes of length  $n = 4$:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the  repetition code   $\text{RC (4, 1)}$   ⇒   "Code 2"   with the parity-check matrix
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the   $\text{(4, 2)}$ block code   ⇒   "Code 3"   with the generator matrix
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the  $\text{(4, 2)}$ block code   ⇒   "Code 4"   with the generator matrix
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
  • another "Code 5"   with the code cardinality (Überstetzung von Codeumfang laut Wachter-Zeh VL)  $|\hspace{0.05cm}C\hspace{0.05cm}| = 6$.


The individual codes are explicitly indicated in the graphic. The questions for these tasks are about the terms




Hints :



Questions

1

How can "Code 5" be described?

There are exactly two zeros in each codeword.
There are exactly two ones in each codeword.
After each $0$, the symbols  $0$  and  $1$  are equally likely.

2

Which of the following block codes are linear?

code 1,
code 2,
code 3,
code 4,
code 5.

3

Which of the following block codes are systematic?

code 1,
code 2,
code 3,
code 4,
code 5.

4

Which code pairs are dual to each other?

code 1 and code 2,
code 2 and code 3,
code 3 and code 4.


Solution

(1)  Statements 1 and 2 are correct:

  • That is why there are $\rm 4 \ over \ 2 = 6$ codewords.
  • Statement 3 is false. For example, if the first bit is $0$, there is one codeword starting $00$ and two codewords starting $01$.


(2)  Statements 1 to 4 are correct:

  • All codes that can be described by a generator matrix $\boldsymbol {\rm G}$ and/or a parity-check matrix $\boldsymbol {\rm H}$ are linear.
  • In contrast, "Code 5" does not satisfy any of the conditions required for linear codes. For example
  • is missing the all zero word,
  • the code cardinality $|\mathcal{C}|$ is not a power of two,
  • gives $(0, 1, 0, 1) \oplus (1, 0, 1, 0) = (1, 1, 1, 1)$ no valid codeword.


(3)  Statements 1 to 3 are correct:

  • In a systematic code, the first $k$ bits of each codeword $\underline{x}$ must always be equal to the information word $\underline{u}$.
  • This is achieved if the beginning of the generator matrix $\boldsymbol {\rm G}$ is a unit matrix $\boldsymbol{\rm I}_{k}$.
  • This is true for "Code 1" (with dimension $k = 3$), "Code 2" (with $k = 1$) and "code 3" (with $k = 2$).
  • The generator matrix of "Code 2", however, is not explicitly stated. It is:
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$


(4)  Statement 1 is correct:

  • Dual codes are those where the parity-check matrix $\boldsymbol {\rm H}$ of one code is equal to the generator matrix $\boldsymbol {\rm G}$ of the other code.
  • For example, this is true for "Code 1" and "Code 2."
  • For the SPC (4, 3) holds:
$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
and for the repetition code RC (4, 1):
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &0 &1\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • Statement 2 is certainly wrong, already for dimensional reasons: The generator matrix $\boldsymbol {\rm G}$ of "Code 3" is a $2×4$ matrix and the parity-check matrix $\boldsymbol {\rm H}$ of "Code 2" is a $3×4$ matrix.
  • "Code 3" and "Code 4" also do not satisfy the conditions of dual codes. The parity-check equations of
$${\rm Code}\hspace{0.15cm}3 = \{ (0, 0, 0, 0) \hspace{0.05cm},\hspace{0.1cm} (0, 1, 1, 0) \hspace{0.05cm},\hspace{0.1cm}(1, 0, 0, 1) \hspace{0.05cm},\hspace{0.1cm}(1, 1, 1, 1) \}$$
are as follows:
$$x_1 \oplus x_4 = 0\hspace{0.05cm},\hspace{0.2cm}x_2 \oplus x_3 = 0 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}} = \begin{pmatrix} 1 &0 &0 &1\\ 0 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$
In contrast, the generator matrix of "Code 4" is given as follows:
$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &1 &0 &0\\ 0 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$