Difference between revisions of "Aufgaben:Exercise 3.11Z: Metric and Accumutated Metric"

From LNTwww
Line 71: Line 71:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  From the equations on the information section one can see $d_0 = \underline{–0.4}$ and $d_1 = \underline {–0.8}$.
+
'''(1)'''  From the equations on the information section one can see  $d_0 = \underline{–0.4}$  and  $d_1 = \underline {–0.8}$.
  
  
'''(2)'''  The metrics $\varepsilon_0(i)$ include the basic pulse value $g_{\rm –1}$, which is used to establish the relationship between the amplitude coefficient $a_1$ and the detection sample $d_0$ ($g_0$ is not included in these equations).  
+
'''(2)'''  The metric  $\varepsilon_0(i)$  include the basic pulse value  $g_{\rm –1}$,  which is used to establish the relationship between the amplitude coefficient  $a_1$  and the detection sample  $d_0$  $(g_0$  is not included in these equations$)$.  
*One can see $g_{\rm –1}\  \underline {= 0.4}$.  
+
*One can see  $g_{\rm –1}\  \underline {= 0.4}$.
*From the equations for $\nu = 1$, the main value $g_0 \ \underline {= 0.6}$ can be read.
+
 +
*From the equations for  $\nu = 1$,  the main value $g_0 \ \underline {= 0.6}$  can be read.
  
  
  
'''(3)'''&nbsp; The correct solutions are <u>1 and 4</u>:
+
'''(3)'''&nbsp; The correct solutions are&nbsp; <u>1 and 4</u>:
*The possible useful samples are $\pm g_0 \pm g_{\rm &ndash;1} = \pm 0.6 \pm0.4$, i.e. $\underline {&plusmn;0.2}$ and $\underline {&plusmn;1.0}$.  
+
*The possible useful samples are&nbsp; $\pm g_0 \pm g_{\rm &ndash;1} = \pm 0.6 \pm0.4$,&nbsp; i.e.&nbsp; $\underline {&plusmn;0.2}$&nbsp; and&nbsp; $\underline {&plusmn;1.0}$.
*In contrast, unipolar signaling &nbsp; &rArr; &nbsp; $a_\nu \in \{0, \hspace{0.05cm} 1\}$ would result in values of $0, \ 0.4, \ 0.6$ and $1$.
+
*The relationship between bipolar values $b_i$ and unipolar equivalents $u_i$ is generally: &nbsp; $b_i = 2 \cdot u_i - 1 \hspace{0.05cm}.$
+
*In contrast,&nbsp; unipolar signaling &nbsp; &rArr; &nbsp; $a_\nu \in \{0, \hspace{0.05cm} 1\}$&nbsp; would result in values of&nbsp; $0, \ 0.4, \ 0.6$&nbsp; and&nbsp; $1$.  
  
 +
*The relationship between bipolar values&nbsp; $b_i$&nbsp; and unipolar equivalents&nbsp; $u_i$&nbsp; is generally: &nbsp; $b_i = 2 \cdot u_i - 1  \hspace{0.05cm}.$
  
  
'''(4)'''&nbsp; The metrics are obtained for $\nu = 2$ considering the result from (3) as follows:
+
 
 +
'''(4)'''&nbsp; The metrics are obtained for&nbsp; $\nu = 2$&nbsp; considering the result from&nbsp; '''(3)'''&nbsp; as follows:
 
:$$\varepsilon_{2}(+1, +1)  \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm}
 
:$$\varepsilon_{2}(+1, +1)  \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm}
 
   \varepsilon_{2}(-1, +1)  = [0.1 +0.2]^2=0.09
 
   \varepsilon_{2}(-1, +1)  = [0.1 +0.2]^2=0.09
Line 95: Line 98:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Thus, the minimum accumulated metrics are:
+
Thus,&nbsp; the minimum accumulated metrics are:
 
:$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1),
 
:$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1),
 
  \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] =
 
  \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] =
Line 105: Line 108:
  
 
[[File:P_ID1480__Dig_Z_3_11d.png|right|frame|Calculation of the minimum accumulated metrics]]
 
[[File:P_ID1480__Dig_Z_3_11d.png|right|frame|Calculation of the minimum accumulated metrics]]
<br>In the adjacent trellis diagram, the state "$1$" is to be interpreted as "$+1$" and "$0$" as "$&ndash;1$".
+
<br>In the adjacent trellis diagram,&nbsp; the state&nbsp; "$1$"&nbsp; is to be interpreted as&nbsp; "$+1$"&nbsp; and&nbsp; "$0$"&nbsp; as&nbsp; "$&ndash;1$".
  
 
Then holds:
 
Then holds:
*${\it \Gamma}_2(+1) = 0.13$ is the minimum total error quantity under the hypothesis that the following symbol will be $a_3 = +1$.
+
*${\it \Gamma}_2(+1) = 0.13$&nbsp; is the minimum accumulated metric under the hypothesis that the following symbol will be&nbsp;  $a_3 = +1$.
*Under this assumption, $a_2 = \ &ndash;1$ is more likely than $a_2 = +1$, as shown in the trellis diagram (the incoming path is blue).
+
 
*A realistic alternative to the combination "$a_2 = \ &ndash;1, a_3 = +1$" is "$a_2 = +1, a_3 = \ &ndash;1$", which lead to the minimum total error quantity ${\it \Gamma}_2(&ndash;1) = 0.37$. Here, the incoming path is red.
+
*Under this assumption,&nbsp; $a_2 = \ &ndash;1$&nbsp; is more likely than&nbsp; $a_2 = +1$,&nbsp; as shown in the trellis diagram&nbsp; (the incoming path is blue).
 +
 
 +
*A realistic alternative to the combination&nbsp; "$a_2 = \ &ndash;1, a_3 = +1$"&nbsp; is&nbsp; "$a_2 = +1, a_3 = \ &ndash;1$",&nbsp; which lead to the minimum accumulated metric&nbsp; ${\it \Gamma}_2(&ndash;1) = 0.37$. Here, the incoming path is red.
 +
 
  
  
'''(5)'''&nbsp; For time $\nu = 3$, the following equations hold:
+
'''(5)'''&nbsp; For time&nbsp; $\nu = 3$,&nbsp; the following equations hold:
 
:$$\varepsilon_{3}(+1, +1)  \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm}
 
:$$\varepsilon_{3}(+1, +1)  \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm}
 
   \varepsilon_{3}(-1, +1)  = [0.5 +0.2]^2=0.49
 
   \varepsilon_{3}(-1, +1)  = [0.5 +0.2]^2=0.49
Line 125: Line 131:
 
  0.22}  \hspace{0.05cm}.$$
 
  0.22}  \hspace{0.05cm}.$$
  
*In both equations, the first term in each case is the smaller, with ${\it \Gamma}_2(+1) = 0.13$ included in each case.
+
*In both equations,&nbsp; the first term in each case is the smaller,&nbsp; with&nbsp; ${\it \Gamma}_2(+1) = 0.13$&nbsp; included in each case.
*Therefore, the Viterbi receiver will certainly output $a_3 = +1$, no matter what information it will still get at later times ($\nu > 3$).
 
  
 +
*Therefore,&nbsp; the Viterbi receiver will certainly output&nbsp; $a_3 = +1$,&nbsp; no matter what information it will still get at later times&nbsp; $(\nu > 3)$.
  
If we follow the continuous path in the trellis diagram, the other amplitude coefficients are also fixed by fixing $a_3 = +1$:
+
*If we follow the continuous path in the trellis diagram from the right to the left,&nbsp; the other amplitude coefficients are also fixed by fixing&nbsp; $a_3 = +1$:
 
:$$a_1 = a_2 = \ &ndash;1.$$
 
:$$a_1 = a_2 = \ &ndash;1.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 14:50, 4 July 2022

Calculation of the minimum accumulated metrics

For the maximum likelihood constellation with bipolar amplitude coefficient   $a_{\rm \nu} ∈ \{+1, –1\}$  discussed in   "Exercise 3.11",  the metrics   $\varepsilon_{\rm \nu}(i)$  and the minimum accumulated metrics   ${\it \Gamma}_{\rm \nu}(–1)$ and ${\it \Gamma}_{\rm \nu}(+1)$  are to be determined.

The basic pulse is given by the two values   $g_0$  and  $g_{\rm –1}$.  These,  as well as the detection samples   $d_0$  and  $d_1$,  can be taken from the following calculations for the metrics   $\varepsilon_{\rm \nu}(i)$  at times   $\nu = 0$  and  $\nu = 1$.  Note that the symbol  $a_0 = 0$  is always sent before the actual message   $(a_1$,  $a_2$,  $a_3)$. 

For time  $\nu = 0$  holds:

$$\varepsilon_{0}(+1) \ = \ \big[-0.4- 0.4\big]^2=0.64 \hspace{0.05cm},$$
$$\varepsilon_{0}(-1) \ = \ \big[-0.4+ 0.4\big]^2=0.00 \hspace{0.05cm}.$$

From this it could be concluded already at time   $\nu = 0$  that with high probability   $a_1 = -\hspace{-0.05cm}1$. 

For time   $\nu = 1$,  the following metrics result:

$$\varepsilon_{1}(+1, +1) \ = \ \big[-0.8- 0.6 -0.4\big]^2=3.24 \hspace{0.05cm},$$
$$\varepsilon_{1}(+1, -1) \ = \ \big[-0.8- 0.6 +0.4\big]^2=1.00 \hspace{0.05cm},$$
$$\varepsilon_{1}(-1, +1) \ = \ \big[-0.8+ 0.6 -0.4\big]^2=0.36 \hspace{0.05cm},$$
$$ \varepsilon_{1}(-1, -1) \ = \ \big[-0.8+ 0.6 +0.4\big]^2=0.04 \hspace{0.05cm}.$$

The minimum accumulated metrics   ${\it \Gamma}_{\rm \nu}(-\hspace{-0.07cm}1)$   and   ${\it \Gamma}_{\rm \nu}(+1)$   that can be calculated with these six metrics are already plotted in the graph.  The other detection samples are   $d_{2}=0.1 \hspace{0.05cm},\hspace{0.1cm} d_{3}=0.5 \hspace{0.05cm}.$


Notes:

  • All quantities here are to be understood normalized.
  • Also assume bipolar and equal probability amplitude coefficients:   ${\rm Pr} (a_\nu = -\hspace{-0.05cm}1) = {\rm Pr} (a_\nu = +1)= 0.5.$


Questions

1

What detection samples   $d_0$  and  $d_1$  were assumed here?

$d_0 \ = \ $

$d_1\ = \ $

2

Which basic pulse values were assumed here?

$g_0\ = \ $

$g_{-1} \ = \ $

3

Which of the listed detection samples are possible for   $\nu ≥ 1$? 

$±0.2,$
$±0.4,$
$±0.6,$
$±1.0.$

4

Give the minimum accumulated metrics for time   $\nu = 2$   $(d_2 = 0.1)$.

${\it \Gamma}_2(+1)\ = \ $

${\it \Gamma}_2(-\hspace{-0.05cm}1)\ = \ $

5

Calculate the minimum accumulated metric for time   $\nu = 3$  $(d_3 = 0.5)$.

${\it \Gamma}_3(+1) \ = \ $

${\it \Gamma}_3(-\hspace{-0.05cm}1) \ = \ $


Solution

(1)  From the equations on the information section one can see  $d_0 = \underline{–0.4}$  and  $d_1 = \underline {–0.8}$.


(2)  The metric  $\varepsilon_0(i)$  include the basic pulse value  $g_{\rm –1}$,  which is used to establish the relationship between the amplitude coefficient  $a_1$  and the detection sample  $d_0$  $(g_0$  is not included in these equations$)$.

  • One can see  $g_{\rm –1}\ \underline {= 0.4}$.
  • From the equations for  $\nu = 1$,  the main value $g_0 \ \underline {= 0.6}$  can be read.


(3)  The correct solutions are  1 and 4:

  • The possible useful samples are  $\pm g_0 \pm g_{\rm –1} = \pm 0.6 \pm0.4$,  i.e.  $\underline {±0.2}$  and  $\underline {±1.0}$.
  • In contrast,  unipolar signaling   ⇒   $a_\nu \in \{0, \hspace{0.05cm} 1\}$  would result in values of  $0, \ 0.4, \ 0.6$  and  $1$.
  • The relationship between bipolar values  $b_i$  and unipolar equivalents  $u_i$  is generally:   $b_i = 2 \cdot u_i - 1 \hspace{0.05cm}.$


(4)  The metrics are obtained for  $\nu = 2$  considering the result from  (3)  as follows:

$$\varepsilon_{2}(+1, +1) \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm} \varepsilon_{2}(-1, +1) = [0.1 +0.2]^2=0.09 \hspace{0.05cm},$$
$$\varepsilon_{2}(+1, -1) \ = \ [0.1 -0.2]^2=0.01,\hspace{0.2cm} \varepsilon_{2}(-1, -1) = [0.1 +1.0]^2=1.21 \hspace{0.05cm}.$$

Thus,  the minimum accumulated metrics are:

$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] = {\rm Min}\left[0.36 + 0.81, 0.04 + 0.09\right]\hspace{0.15cm}\underline {= 0.13} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(-1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, -1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, -1)\right] = {\rm Min}\left[0.36 + 0.01, 0.04 + 1.21\right]\hspace{0.15cm}\underline {= 0.37} \hspace{0.05cm}.$$
Calculation of the minimum accumulated metrics


In the adjacent trellis diagram,  the state  "$1$"  is to be interpreted as  "$+1$"  and  "$0$"  as  "$–1$".

Then holds:

  • ${\it \Gamma}_2(+1) = 0.13$  is the minimum accumulated metric under the hypothesis that the following symbol will be  $a_3 = +1$.
  • Under this assumption,  $a_2 = \ –1$  is more likely than  $a_2 = +1$,  as shown in the trellis diagram  (the incoming path is blue).
  • A realistic alternative to the combination  "$a_2 = \ –1, a_3 = +1$"  is  "$a_2 = +1, a_3 = \ –1$",  which lead to the minimum accumulated metric  ${\it \Gamma}_2(–1) = 0.37$. Here, the incoming path is red.


(5)  For time  $\nu = 3$,  the following equations hold:

$$\varepsilon_{3}(+1, +1) \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm} \varepsilon_{3}(-1, +1) = [0.5 +0.2]^2=0.49 \hspace{0.05cm},$$
$$\varepsilon_{3}(+1, -1) \ = \ [0.5 -0.2]^2=0.09,\hspace{0.2cm} \varepsilon_{3}(-1, -1) = [0.5 +1.0]^2=2.25 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}{\it \Gamma}_{3}(+1) \ = \ {\rm Min}\left[0.13 + 0.25, 0.37 + 0.49\right]\hspace{0.15cm}\underline {= 0.38} \hspace{0.05cm},\hspace{0.8cm} {\it \Gamma}_{3}(-1) \ = \ {\rm Min}\left[0.13 + 0.09, 0.37 + 2.25\right]\hspace{0.15cm}\underline {= 0.22} \hspace{0.05cm}.$$
  • In both equations,  the first term in each case is the smaller,  with  ${\it \Gamma}_2(+1) = 0.13$  included in each case.
  • Therefore,  the Viterbi receiver will certainly output  $a_3 = +1$,  no matter what information it will still get at later times  $(\nu > 3)$.
  • If we follow the continuous path in the trellis diagram from the right to the left,  the other amplitude coefficients are also fixed by fixing  $a_3 = +1$:
$$a_1 = a_2 = \ –1.$$