Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.12: Trellis Diagram for Two Precursors"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
 
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
We assume the basic pulse values   g0,  g_{\rm –1}  and  g_{\rm –2}:   
+
We assume the basic pulse values   $g_0\ne 0, g_{\rm –1}\ne 0  and g_{\rm –2}\ne 0$:   
*This means that the decision on the symbol   aν  is also influenced by the subsequent coefficients   aν+1  and  aν+2.   
+
*This means that the decision on the symbol  aν  is also influenced by the subsequent coefficients  aν+1  and  aν+2. 
*Thus, for each time point   ν,  exactly eight error quantities   εν  have to be determined, from which the minimum total error quantities   Γν(00),  Γν(01),  Γν(10)  and  Γν(11)  can be calculated.
+
*Here, for example,   Γν(01)  provides information about the symbol   aν  under the assumption that   aν+1=0  and  aν+2=1  will be.
+
*Thus,  for each time point   ν,  exactly eight  '''metrics'''   εν  have to be determined, from which the  '''minimum accumulated metrics'''   Γν(00),  Γν(01),  Γν(10)  and  Γν(11)  can be calculated.
*Here, the minimum total error quantity   Γν(01)  is the smaller value obtained from the comparison of
+
 
 +
*For example,   Γν(01)  provides information about the symbol  aν  under the assumption that  aν+1=0  and  aν+2=1  will be.
 +
 
 +
*Here, the minimum accumulated metric   Γν(01)  is the smaller value obtained from the comparison of
 
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
  
To calculate the minimum total error quantity   Γ2(10)  in subtasks '''(1)''' and '''(2)''', assume the following numerical values:
+
To calculate the minimum accumulated metric   Γ2(10)  in subtasks '''(1)''' and '''(2)''',  assume the following numerical values:
 
* unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
 
* unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
 +
 
* basic pulse values   g0=0.5,  g_{\rm –1} = 0.3,  g_{\rm –2} = 0.2,
 
* basic pulse values   g0=0.5,  g_{\rm –1} = 0.3,  g_{\rm –2} = 0.2,
* applied detection sample:  d2=0.2,  
+
 
* Minimum total error quantities at time  ν=1:
+
* applied noisy detection sample:  d2=0.2,
 +
 +
* minimum accumulated metric at time  ν=1:
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
  1.2
 
  1.2
Line 21: Line 27:
  
 
The graph shows the simplified trellis diagram for time points   ν=1  to   ν=8.   
 
The graph shows the simplified trellis diagram for time points   ν=1  to   ν=8.   
*Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)  or   {\it \Gamma}_{\rm \nu –1}(01)  and denote a hypothetical "0".  
+
*Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)   or   {\it \Gamma}_{\rm \nu –1}(01)   and denote a hypothetical  "0".
*In contrast, all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol "1".
+
 +
*In contrast,  all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol  "1".
  
  
  
 
+
Notes:  
 
 
''Notes:''
 
 
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 
   
 
   
 
* All quantities here are to be understood normalized.
 
* All quantities here are to be understood normalized.
 +
 
* Also, assume unipolar and equal probability amplitude coefficients:   Pr(aν=0)=Pr(aν=1)=0.5.
 
* Also, assume unipolar and equal probability amplitude coefficients:   Pr(aν=0)=Pr(aν=1)=0.5.
* The topic is also covered in the interactive applet   [[Applets:Viterbi|"Properties of the Viterbi Receiver"]]. 
 
  
  
Line 39: Line 44:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the following error quantities:
+
{Calculate the following metrics:
 
|type="{}"}
 
|type="{}"}
 
ε2(010) =  { 0.01 3% }
 
ε2(010) =  { 0.01 3% }
Line 46: Line 51:
 
ε2(111) =  { 0.64 3% }
 
ε2(111) =  { 0.64 3% }
  
{Calculate the following minimum total error quantities:
+
{Calculate the following minimum accumulated metrics:
 
|type="{}"}
 
|type="{}"}
 
Γ2(10) =  { 0.21 3% }
 
Γ2(10) =  { 0.21 3% }
Line 53: Line 58:
 
{What are the symbols output by the Viterbi receiver?
 
{What are the symbols output by the Viterbi receiver?
 
|type="[]"}
 
|type="[]"}
+ The first seven symbols are &nbsp;1011010.
+
+ The first seven symbols are &nbsp; "1011010".
- The first seven symbols are &nbsp;1101101.
+
- The first seven symbols are &nbsp; "1101101".
 
- The last symbol &nbsp;a8=1&nbsp; is safe.
 
- The last symbol &nbsp;a8=1&nbsp; is safe.
 
+ No definite statement can be made about the symbol &nbsp;a8.&nbsp;  
 
+ No definite statement can be made about the symbol &nbsp;a8.&nbsp;  

Revision as of 17:24, 4 July 2022

Trellis diagram for two precursors

We assume the basic pulse values   g00g_{\rm –1}\ne 0  and  g_{\rm –2}\ne 0

  • This means that the decision on the symbol  a_{\rm \nu}  is also influenced by the subsequent coefficients  a_{\rm \nu +1}  and  a_{\rm \nu +2}
  • Thus,  for each time point   \nu,  exactly eight  metrics   \varepsilon_{\rm \nu}  have to be determined, from which the  minimum accumulated metrics   {\it \Gamma}_{\rm \nu}(00){\it \Gamma}_{\rm \nu}(01){\it \Gamma}_{\rm \nu}(10)  and  {\it \Gamma}_{\rm \nu}(11)  can be calculated.
  • For example,   {\it \Gamma}_{\rm \nu}(01)  provides information about the symbol  a_{\rm \nu}  under the assumption that  a_{\rm \nu +1} = 0  and  a_{\rm \nu +2} = 1  will be.
  • Here, the minimum accumulated metric   {\it \Gamma}_{\rm \nu}(01)  is the smaller value obtained from the comparison of
\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].

To calculate the minimum accumulated metric   {\it \Gamma}_2(10)  in subtasks (1) and (2),  assume the following numerical values:

  • unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
  • basic pulse values   g_0 = 0.5g_{\rm –1} = 0.3g_{\rm –2} = 0.2,
  • applied noisy detection sample:  d_2 = 0.2,
  • minimum accumulated metric at time  \nu = 1:
{\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.

The graph shows the simplified trellis diagram for time points   \nu = 1  to   \nu = 8

  • Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)   or   {\it \Gamma}_{\rm \nu –1}(01)   and denote a hypothetical  "0".
  • In contrast,  all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol  "1".


Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   {\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.


Questions

1

Calculate the following metrics:

\varepsilon_2(010) \ = \

\varepsilon_2(011) \ = \

\varepsilon_2(110) \ = \

\varepsilon_2(111) \ = \

2

Calculate the following minimum accumulated metrics:

{\it \Gamma}_2(10) \ = \

{\it \Gamma}_2(11) \ = \

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are   "1011010".
The first seven symbols are   "1101101".
The last symbol  a_8 = 1  is safe.
No definite statement can be made about the symbol  a_8


Solution

(1)  The first error quantity is calculated as follows:

\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.

Correspondingly, for the other error quantities:

\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},
\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},
\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.


(2)  The task is to find the minimum value of each of two comparison values:

{\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},
{\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.


(3)  The first and last solutions are correct:

  • The sequence 1011010 can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand, no final statement can be made about the symbol a_8 at time \nu = 8:
  • Only under the hypothesis a_9 = 1 and a_{\rm 10} = 1 one would decide for a_8 = 0, under other hypotheses for a_8 = 1.