Difference between revisions of "Aufgaben:Exercise 1.11: Syndrome Decoding"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
  
[[File:P_ID2397__KC_A_1_11.png|right|frame|Syndrom und Nebenklassenanführer (unvollständige Liste) des  $\rm HC \ (7, \, 4, \, 3)$ ]]
+
[[File:P_ID2397__KC_A_1_11.png|right|frame|Syndrome and coset leaders (incomplete list) of  $\rm HC \ (7, \, 4, \, 3)$ ]]
  
Zur Decodierung eines  $(7, \, 4, \, 3)$–Hamming–Codes, der durch seine Prüfmatrix
+
To decode a  $(7, \, 4, \, 3)$ Hamming code, which is defined by its parity-check matrix
  
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}$$
 
:$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}$$
  
gegeben ist, eignet sich auch die "Syndromdecodierung". Da alle Hamming–Codes perfekt sind, ergibt sich hiermit ein gleich gutes Ergebnis wie mit der (im allgemeinen Fall) komplizierteren Maximum–Likelihood–Detektion.
+
"syndrome decoding" is also suitable. Since all Hamming codes are perfect, the result is as good as with the (in the general case) more complicated maximum likelihood detection.
  
Bei der  [[Channel_Coding/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung|Syndromdecodierung]]  geht man wie folgt vor:
+
For  [[Channel_Coding/Decoding_of_Linear_Block_Codes#Principle_of_syndrome_decoding|"syndrome decoding"]]  one proceeds as follows:
*Man bildet aus dem Empfangsvektor  $\underline{y}$  das Syndrom  $($es gilt  $m = n - k)$:
+
*From the receive vector  $\underline{y}$  one forms the syndrome  $($it holds  $m = n - k)$:
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  
*Beim  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC–Kanal]]  ist auch das Empfangswort  $\underline{y} = \underline{x} \, ({\rm Codewort}) + \underline{e} \, ({\rm Fehlervektor})$  ein Element aus  ${\rm GF}(2^n)$, und es gilt wegen  $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} =  
+
*In  [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|"BSC channel"]]  the receive word is also  $\underline{y} = \underline{x} \, ({\rm codeword}) + \underline{e} \, ({\rm error\:vector})$  an element of  ${\rm GF}(2^n)$, and it holds because of  $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} =  
  \underline{0}$  gleichermaßen:
+
  \underline{0}$  equally:
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
  
*Viele Fehlermuster  $\underline{e}$  führen zum gleichen Syndrom  $\underline{s}$. Man fasst nun diejenigen Fehlermuster mit gleichem Syndrom  $\underline{s}_{\mu}$  zur Nebenklasse  ${\it \Psi}_{\mu}$  zusammen.
+
*Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$. One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the coset  ${\it \Psi}_{\mu}$ .
  
*Als Nebenklassenanführer  $\underline{e}_{\mu}$  bezeichnet man denjenigen Fehlervektor, der innerhalb der Klasse  ${\it \Psi}_{\mu}$  das geringste Hamming–Gewicht aufweist und dementsprechend am wahrscheinlichsten ist. Gibt es hiervon mehrere, so wählt man willkürlich einen davon aus.
+
*The coset leader  $\underline{e}_{\mu}$  is the fault vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable. If there are several of these, one chooses one of them arbitrarily.
  
  
Die obige Grafik zeigt die unvollständige Liste der Nebenklassenanführer  $\underline{e}_{\mu}$  für die einzelnen  $\underline{s}_{\mu}$ .  
+
The above graph shows the incomplete list of coset leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$ .  
Die wahrscheinlichsten Fehlervektoren
+
The most likely error vectors
*$\underline{e}_{3}$  mit Syndrom  $\underline{s}_{3} = (0, 1, 1)$,
+
*$\underline{e}_{3}$  with syndrome  $\underline{s}_{3} = (0, 1, 1)$,
*$\underline{e}_{5}$  mit Syndrom  $\underline{s}_{5} = (1, 0, 1)$,
+
*$\underline{e}_{5}$  with syndrome  $\underline{s}_{5} = (1, 0, 1)$,
*$\underline{e}_{6}$  mit Syndrom  $\underline{s}_{6} = (1, 1, 0)$,
+
*$\underline{e}_{6}$  with syndrome  $\underline{s}_{6} = (1, 1, 0)$,
*$\underline{e}_{7}$  mit Syndrom  $\underline{s}_{7} = (1, 1, 1)$
+
*$\underline{e}_{7}$  with syndrome  $\underline{s}_{7} = (1, 1, 1)$
  
  
sollen in den Teilaufgaben '''(4)''' und '''(5)''' ermittelt werden.
+
are to be determined in the subtasks '''(4)''' and '''(5)'''.
  
  
Line 37: Line 37:
  
  
 
+
Hints:
''Hinweise:''
+
* This exercise belongs to the chapter  [[Channel_Coding/Decoding_of_Linear_Block_Codes|"Decoding of Linear Block Codes"]].  
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].  
+
* Underlying is a Hamming code with parameters  $n = 7$  and  $k = 4$   ⇒   $m = 3$. All code words have the following format:
* Zugrunde liegt ein Hamming–Code mit den Parametern  $n = 7$  und  $k = 4$     ⇒   $m = 3$. Alle Codeworte haben das folgende Format:
 
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
*Die Prüfgleichungen sind auf dem Angabenblatt zur  [[Aufgaben:1.11Z_Nochmals_Syndromdecodierung|Aufgabe 1.11Z]]  veranschaulicht, in der die gleiche Konstellation wie in der vorliegenden Aufgabe  betrachtet wird.  
+
*The parity-check equations are illustrated on the information sheet for  [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|"Exercise 1.11Z"]]  which considers the same constellation as in the present exercise.  
*Verwenden Sie in der letzten Teilaufgabe '''(6)''' den BSC–Parameter  $ \varepsilon = 0.1$.
+
*In the last subtask '''(6)''', use the BSC parameter  $ \varepsilon = 0.1$.
 
   
 
   
  
Line 49: Line 48:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Wie viele Empfangsworte&nbsp; $(N_{0})$&nbsp; führen zum Syndrom&nbsp; $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?
+
{How many received words&nbsp; $(N_{0})$&nbsp; lead to the syndrome.&nbsp; $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?
 
|type="{}"}
 
|type="{}"}
 
$N_{0} \ = \ $ { 16 3% }
 
$N_{0} \ = \ $ { 16 3% }
  
{Wie viele Empfangsworte&nbsp; $(N_{7})$&nbsp; führen zum Syndrom&nbsp; $\underline{s} = \underline{s}_{7} = (1, 1, 1)$?
+
{How many received words&nbsp; $(N_{7})$&nbsp; lead to the syndrome&nbsp; $\underline{s} = \underline{s}_{7} = (1, 1, 1)$?
 
|type="{}"}
 
|type="{}"}
 
$N_{7} \ = \ $ { 16 3% }
 
$N_{7} \ = \ $ { 16 3% }
  
{Welche Eigenschaften weisen alle Nebenklassenanführer&nbsp; $\underline{e}_{\mu}$&nbsp; auf?
+
{What are the characteristics of all coset leaders&nbsp; $\underline{e}_{\mu}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Die letzten drei Bit von&nbsp; $\underline{e}_{\mu}$&nbsp; sind identisch mit&nbsp; $\underline{s}_{\mu}$ .
+
- The last three bits of&nbsp; $\underline{e}_{\mu}$&nbsp; are identical to&nbsp; $\underline{s}_{\mu}$ .
- Alle&nbsp; $\underline{e}_{\mu}$&nbsp; beinhalten jeweils eine einzige&nbsp; $1$.
+
- All&nbsp; $\underline{e}_{\mu}$&nbsp; contain a single&nbsp; $1$ each.
+ Alle&nbsp; $\underline{e}_{\mu}$&nbsp; beinhalten höchstens eine&nbsp; $1$.
+
+ All&nbsp; $\underline{e}_{\mu}$&nbsp; include at most one&nbsp; $1$.
  
{Zu welchem Syndrom&nbsp; $\underline{s}_{\mu}$&nbsp; führt der Fehlervektor&nbsp; $(1, 0, 0, 0, 0, 0, 0)$?
+
{What syndrome&nbsp; $\underline{s}_{\mu}$&nbsp; does the error vector&nbsp; $(1, 0, 0, 0, 0, 0, 0)$ lead to?
 
|type="{}"}
 
|type="{}"}
 
$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 5 }
 
$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 5 }
  
{Berechnen Sie jeweils das Syndrom&nbsp; $\underline{s}_{\mu}$&nbsp; $($Eingabe: &nbsp;Index $\mu)$&nbsp; für
+
{Calculate the syndrome in each case&nbsp; $\underline{s}_{\mu}$&nbsp; $($Input: &nbsp;Index $\mu)$&nbsp; for
 
|type="{}"}
 
|type="{}"}
 
$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 6 }
 
$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $ { 6 }
Line 76: Line 75:
  
  
{Welche Blockfehlerwahrscheinlichkeit ergibt sich für das BSC–Modell mit der Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon = 0.1$?
+
{What is the block error probability for the BSC model with falsification probability&nbsp; $\varepsilon = 0.1$?
 
|type="{}"}
 
|type="{}"}
${\rm Pr(Blockfehler)} \ = \ $ { 15 3% } $\ \%$
+
${\rm Pr(block\:error)} \ = \ $ { 15 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Es gibt insgesamt $2^7 = 128$ verschiedene Codeworte $\underline{x}$ und gemäß dem BSC–Modell auch $2^7$ unterschiedliche Empfangsworte $y$ und ebenso viele Fehlervektoren $\underline{e}$.
+
'''(1)'''&nbsp; There are a total of $2^7 = 128$ different codewords $\underline{x}$ and according to the BSC model also $2^7$ different received words $y$ and as many error vectors $\underline{e}$.
  
*Mit $m = 3$ Prüfbits gibt es $2^3 = 8$ unterschiedliche Werte für das Syndrom,  
+
*With $m = 3$ parity bits, there are $2^3 = 8$ distinct values for the syndrome,
  
 
:$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
 
:$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
  
:und ebenso viele Nebenklassen.  
+
:and just as many cosets.
  
*Da beim Hamming–Code, der ja perfekt ist, alle Fehlervektoren zu einer der acht Nebenklassen ${\it \Psi}_{\mu}$ gehören und zudem die Anzahl aller Vektoren in allen Nebenklassen gleich ist („Warum sollte es anders sein?” Genügt Ihnen das als Beweis?), erhält man
+
*Since in the Hamming code, which is perfect, all error vectors belong to one of the eight cosets ${\it \Psi}_{\mu}$ and, moreover, the number of all vectors in all cosets is the same ("Why should it be different?" Is that enough proof for you?), we get
  
 
:$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
 
:$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
  
*Zur Nebenklasse ${\it \Psi}_{0}$ gehören beispielsweise – siehe Musterlösung zur [[Aufgaben:1.11Z_Nochmals_Syndromdecodierung|Aufgabe 1.11Z]] – die Vektoren
+
*The cosets ${\it \Psi}_{0}$ include for example - see sample solution to [[Aufgaben:Exercise_1.11Z:_Syndrome_Decoding_again|Exercise 1.11Z]] - the vectors
  
 
:$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
 
:$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
Line 102: Line 101:
  
  
'''(2)'''&nbsp; Entsprechend den Kommentaren des letzten Teilergebnisses gilt gleichermaßen $N_{7} \ \underline{= 16}$.
+
'''(2)'''&nbsp; According to the comments of the last partial result, the following applies equally $N_{7} \ \underline{= 16}$.
  
  
  
'''(3)'''&nbsp; Richtig ist <u>Antwort 3</u>:  
+
'''(3)'''&nbsp; Correct is <u>answer 3</u>:  
*Der Nebenklassenanführer $\underline{e}_{\mu}$ ist derjenige Fehlervektor $\underline{e}$ mit dem geringsten [[Channel_Coding/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] $w_{\rm H}(\underline{e})$, der zum Syndrom $\underline{s}_{\mu}$ führt.  
+
*The coset leader $\underline{e}_{\mu}$ is the error vector $\underline{e}$ with the lowest [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|Hamming weight]] $w_{\rm H}(\underline{e})$ that leads to the syndrome $\underline{s}_{\mu}$.  
*Der hier betrachtete Hamming–Code (7, 4, 3) ist perfekt. Das heißt: Alle acht Nebenklassenanführer beinhalten deshalb
+
*The Hamming code considered here (7, 4, 3) is perfect. That is, all eight coset leaders therefore contain.
:*entweder keine „Eins” ($\underline{e}_{0}$ &nbsp; ⇒ &nbsp; es ist keinerlei Korrektur erforderlich), oder
+
:*either no "one" ($\underline{e}_{0}$ &nbsp; ⇒ &nbsp; no correction is required), or
:*genau eine einzige „Eins” ($\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$ &nbsp; ⇒ &nbsp; es muss ein Informations– oder Prüfbit korrigiert werden).
+
:*exactly a single "one" ($\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$ &nbsp; ⇒ &nbsp; an information or parity bit must be corrected).
  
  
  
'''(4)'''&nbsp;  Es gilt $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:
+
'''(4)'''&nbsp;  It holds $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:
 
:$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$
 
:$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$
  
 
   
 
   
  
  [[File:P_ID2398__KC_A_1_11d.png|right|frame|Alle Nebenklassenanführer des $(7, \, 4, \, 3)$–Hamming–Codes]]  
+
  [[File:P_ID2398__KC_A_1_11d.png|right|frame|All coset leaders of the $(7, \, 4, \, 3)$ Hamming code. ]]  
'''(5)'''&nbsp; Ein Vergleich mit der Lösung zur letzten Teilaufgabe zeigt, dass $(0, 1, 0, 0, 0, 0, 0) ·  \boldsymbol{\rm H}^{\rm T}$ als Syndrom die zweite Zeile der transponierten Matrix ergibt:
+
'''(5)'''&nbsp; A comparison with the solution to the last subtask shows that $(0, 1, 0, 0, 0, 0) - \boldsymbol{\rm H}^{\rm T}$ as a syndrome gives the second row of the transposed matrix:
  
 
:$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
 
:$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
Line 134: Line 133:
 
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
 
:$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
  
Die nebenstehende Grafik fasst die Ergebnisse der Teilaufgaben '''(4)''' und '''(5)''' nochmals zusammen.
+
The adjacent graph summarizes again the results of the subtasks '''(4)''' and '''(5)'''.
  
  
  
'''(6)'''&nbsp;  Beim betrachteten $(7, \, 4, \, 3)$–Hamming–Code wird dann für das richtige Informationswort entschieden, wenn bei der Übertragung höchstens ein Bit innerhalb des Codewortes verfälscht wird. Daraus folgt:
+
'''(6)'''&nbsp;  For the $(7, \, 4, \, 3)$ Hamming code under consideration, the correct information word is decided if at most one bit within the codeword is corrupted during transmission. It follows:
  
:$${ \rm Pr(Blockfehler)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}Bitfehler\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}Bitfehler)} - { \rm Pr(1\hspace{0.15cm}Bitfehler)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
+
:$${ \rm Pr(block\:errors)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}bit\hspace{0.15cm}errors\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}bit\hspace{0.15cm}errors)} - { \rm Pr(1\hspace{0.15cm}bit\hspace{0.15cm}errors)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
  
*Bei uncodierter Übertragung eines Blocks mit $n = k = 4$ Bit ergäbe sich beim gleichen BSC–Kanal:
+
*Uncoded transmission of a block with $n = k = 4$ bits would result in the same BSC channel:
  
:$${ \rm Pr(Blockfehler)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
+
:$${ \rm Pr(block\:errors)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
  
*Der Vergleich ist allerdings nicht ganz fair, da mit $n = 4$ eine kleinere Verfälschungswahrscheinlichkeit $\varepsilon$ anzusetzen wäre als mit $n = 7$ (kleinere Symbolrate &nbsp; ⇒&nbsp; kleinere Bandbreite &nbsp; ⇒ &nbsp; kleinere Rauschleistung).
+
*The comparison is not entirely fair, however, since with $n = 4$ a smaller corruption probability $\varepsilon$ would have to be applied than with $n = 7$ (smaller symbol rate &nbsp; ⇒&nbsp; smaller bandwidth &nbsp; ⇒ &nbsp; smaller noise power).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 22:45, 13 July 2022

Syndrome and coset leaders (incomplete list) of  $\rm HC \ (7, \, 4, \, 3)$

To decode a  $(7, \, 4, \, 3)$ Hamming code, which is defined by its parity-check matrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}$$

"syndrome decoding" is also suitable. Since all Hamming codes are perfect, the result is as good as with the (in the general case) more complicated maximum likelihood detection.

For  "syndrome decoding"  one proceeds as follows:

  • From the receive vector  $\underline{y}$  one forms the syndrome  $($it holds  $m = n - k)$:
$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  • In  "BSC channel"  the receive word is also  $\underline{y} = \underline{x} \, ({\rm codeword}) + \underline{e} \, ({\rm error\:vector})$  an element of  ${\rm GF}(2^n)$, and it holds because of  $ \underline{x} · \boldsymbol {{\rm H} }^{\rm T} = \underline{0}$  equally:
$$\underline{s} = \underline{e} \cdot { \boldsymbol{\rm H}}^{\rm T} \hspace{0.05cm}.$$
  • Many error patterns  $\underline{e}$  lead to the same syndrome  $\underline{s}$. One now groups those error patterns with the same syndrome  $\underline{s}_{\mu}$  to the coset  ${\it \Psi}_{\mu}$ .
  • The coset leader  $\underline{e}_{\mu}$  is the fault vector that has the lowest Hamming weight within the class  ${\it \Psi}_{\mu}$  and is accordingly the most probable. If there are several of these, one chooses one of them arbitrarily.


The above graph shows the incomplete list of coset leaders  $\underline{e}_{\mu}$  for each  $\underline{s}_{\mu}$ . The most likely error vectors

  • $\underline{e}_{3}$  with syndrome  $\underline{s}_{3} = (0, 1, 1)$,
  • $\underline{e}_{5}$  with syndrome  $\underline{s}_{5} = (1, 0, 1)$,
  • $\underline{e}_{6}$  with syndrome  $\underline{s}_{6} = (1, 1, 0)$,
  • $\underline{e}_{7}$  with syndrome  $\underline{s}_{7} = (1, 1, 1)$


are to be determined in the subtasks (4) and (5).




Hints:

  • This exercise belongs to the chapter  "Decoding of Linear Block Codes".
  • Underlying is a Hamming code with parameters  $n = 7$  and  $k = 4$   ⇒   $m = 3$. All code words have the following format:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
  • The parity-check equations are illustrated on the information sheet for  "Exercise 1.11Z"  which considers the same constellation as in the present exercise.
  • In the last subtask (6), use the BSC parameter  $ \varepsilon = 0.1$.



Questions

1

How many received words  $(N_{0})$  lead to the syndrome.  $\underline{s} = \underline{s}_{0} = (0, 0, 0)$?

$N_{0} \ = \ $

2

How many received words  $(N_{7})$  lead to the syndrome  $\underline{s} = \underline{s}_{7} = (1, 1, 1)$?

$N_{7} \ = \ $

3

What are the characteristics of all coset leaders  $\underline{e}_{\mu}$ ?

The last three bits of  $\underline{e}_{\mu}$  are identical to  $\underline{s}_{\mu}$ .
All  $\underline{e}_{\mu}$  contain a single  $1$ each.
All  $\underline{e}_{\mu}$  include at most one  $1$.

4

What syndrome  $\underline{s}_{\mu}$  does the error vector  $(1, 0, 0, 0, 0, 0, 0)$ lead to?

$\underline{e} = (1, 0, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

5

Calculate the syndrome in each case  $\underline{s}_{\mu}$  $($Input:  Index $\mu)$  for

$\ \underline{e} = (0, 1, 0, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

$\ \underline{e} = (0, 0, 1, 0, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

$\ \underline{e} = (0, 0, 0, 1, 0, 0, 0) \text{:} \hspace{0.4cm} {\rm Index} \ \mu \ = \ $

6

What is the block error probability for the BSC model with falsification probability  $\varepsilon = 0.1$?

${\rm Pr(block\:error)} \ = \ $

$\ \%$


Solution

(1)  There are a total of $2^7 = 128$ different codewords $\underline{x}$ and according to the BSC model also $2^7$ different received words $y$ and as many error vectors $\underline{e}$.

  • With $m = 3$ parity bits, there are $2^3 = 8$ distinct values for the syndrome,
$$\underline{s} \hspace{0.05cm} \in \hspace{0.05cm} \{ \underline{s}_0, \underline{s}_1,\hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{s}_7\} = \{ \underline{s}_{\mu} \}\hspace{0.05cm}, \hspace{0.2cm} \mu = 0, \hspace{0.05cm} \text{...} \hspace{0.05cm} , 7 \hspace{0.05cm},$$
and just as many cosets.
  • Since in the Hamming code, which is perfect, all error vectors belong to one of the eight cosets ${\it \Psi}_{\mu}$ and, moreover, the number of all vectors in all cosets is the same ("Why should it be different?" Is that enough proof for you?), we get
$$ N_0 = \frac{2^n}{2^m} = 2^k \hspace{0.15cm} \underline{= 16} \hspace{0.05cm}.$$
  • The cosets ${\it \Psi}_{0}$ include for example - see sample solution to Exercise 1.11Z - the vectors
$$\underline{e} = (1, 1, 0, 0, 0, 0, 1),$$
$$\underline{e} = (1, 1, 0, 0, 0, 0, 1).$$


(2)  According to the comments of the last partial result, the following applies equally $N_{7} \ \underline{= 16}$.


(3)  Correct is answer 3:

  • The coset leader $\underline{e}_{\mu}$ is the error vector $\underline{e}$ with the lowest Hamming weight $w_{\rm H}(\underline{e})$ that leads to the syndrome $\underline{s}_{\mu}$.
  • The Hamming code considered here (7, 4, 3) is perfect. That is, all eight coset leaders therefore contain.
  • either no "one" ($\underline{e}_{0}$   ⇒   no correction is required), or
  • exactly a single "one" ($\underline{e}_{1}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \underline{e}_{7}$   ⇒   an information or parity bit must be corrected).


(4)  It holds $\underline{s} = \underline{e} · \boldsymbol{\rm H}^{\rm T}$:

$$\underline{s} = \begin{pmatrix} 1 &0 &0 &0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 \end{pmatrix} = \underline{s}_5 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} \hspace{0.15cm} \underline{ \mu= 5} \hspace{0.05cm}.$$


All coset leaders of the $(7, \, 4, \, 3)$ Hamming code.

(5)  A comparison with the solution to the last subtask shows that $(0, 1, 0, 0, 0, 0) - \boldsymbol{\rm H}^{\rm T}$ as a syndrome gives the second row of the transposed matrix:

$$\begin{pmatrix} 0 &1 &0 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &0 \end{pmatrix} = \underline{s}_6$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 6} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_6 = \begin{pmatrix} 0 &1 &0 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
$$\begin{pmatrix} 0 &0 &1 &0 &0 \hspace{0.2cm}\text{... }\end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 0 &1 &1 \end{pmatrix} = \underline{s}_3$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 3} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_3 = \begin{pmatrix} 0 &0 &1 &0 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$
$$\begin{pmatrix} 0 &0 &0 &1 &0 \hspace{0.2cm}\text{... } \end{pmatrix} \cdot { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 &1 &1 \end{pmatrix} = \underline{s}_7$$
$$\Rightarrow\hspace{0.45cm} \underline{ \mu= 7} \hspace{0.05cm}, \hspace{0.2cm} \underline{e}_7 = \begin{pmatrix} 0 &0 &0 &1 &0 &0 &0 \end{pmatrix}\hspace{0.05cm}.$$

The adjacent graph summarizes again the results of the subtasks (4) and (5).


(6)  For the $(7, \, 4, \, 3)$ Hamming code under consideration, the correct information word is decided if at most one bit within the codeword is corrupted during transmission. It follows:

$${ \rm Pr(block\:errors)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} { \rm Pr(\ge 2\hspace{0.15cm}bit\hspace{0.15cm}errors\hspace{0.15cm})} =1 - { \rm Pr(0\hspace{0.15cm}bit\hspace{0.15cm}errors)} - { \rm Pr(1\hspace{0.15cm}bit\hspace{0.15cm}errors)} =1 - 0.9^7 - 7 \cdot 0.1 \cdot 0.9^7 \hspace{0.15cm} \underline{ = 0.15} \hspace{0.05cm}.$$
  • Uncoded transmission of a block with $n = k = 4$ bits would result in the same BSC channel:
$${ \rm Pr(block\:errors)}= 1 - 0.9^4 \approx 0.344 \hspace{0.05cm}.$$
  • The comparison is not entirely fair, however, since with $n = 4$ a smaller corruption probability $\varepsilon$ would have to be applied than with $n = 7$ (smaller symbol rate   ⇒  smaller bandwidth   ⇒   smaller noise power).