Difference between revisions of "Aufgaben:Exercise 1.13: Binary Erasure Channel Decoding"
Line 85: | Line 85: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The received vector is $\underline{y} = (1, {\rm E}, 0, 1, 0, 0, {\rm E})$. Thus, the code symbols at positions 2 and 7 were erased. |
− | + | Based on the given parity-check matrix | |
− | |||
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &0 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0 &1 \end{pmatrix}$$ | :$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &0 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0 &1 \end{pmatrix}$$ | ||
− | + | of the Hamming code is obtained for vector and matrix | |
− | * | + | * with respect to all ''correctly transmitted code symbols'' (index $\rm K$) known to the code word finder: |
:$$\underline{z}_{\rm K} = (1, 0, 1, 0, 0)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \hspace{0.05cm},$$ | :$$\underline{z}_{\rm K} = (1, 0, 1, 0, 0)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \hspace{0.05cm},$$ | ||
− | * | + | |
+ | *with respect to the two ''erased code symbols'' $z_{2}$ and $z_{7}$ (index $\rm E$) to be determined: | ||
:$$\underline{z}_{\rm E} = (z_2, z_7)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \hspace{0.05cm}.$$ | :$$\underline{z}_{\rm E} = (z_2, z_7)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | + | The equation of determination is thus: | |
:$${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T}= { \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T}\hspace{0.3cm} | :$${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T}= { \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T}\hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm} \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \cdot \begin{pmatrix} z_2 \\ z_7 \end{pmatrix} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm}.$$ | \Rightarrow \hspace{0.3cm} \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \cdot \begin{pmatrix} z_2 \\ z_7 \end{pmatrix} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | + | This results in three equations for the two unknowns $z_{2}$ and $z_{7}$: | |
:$${\rm (a)}\ z_{2} = 1,$$ | :$${\rm (a)}\ z_{2} = 1,$$ | ||
Line 113: | Line 113: | ||
− | + | Thus, the codeword finder returns $\underline{z} = (1, 1, 0, 1, 0, 0, 1)$ ⇒ <u>Suggested solution 2</2</u>. | |
+ | |||
+ | '''(2)''' Looking at the given matrix $\boldsymbol{\rm H}_{\rm K}$, we see that it coincides with the first four columns of the parity-check matrix $\boldsymbol{\rm H}$. | ||
+ | *The erasures thus affect the last three bits of the received word ⇒ $\underline{z}_{\rm E} = (z_{5}, z_{6}, z_{7}) ⇒ \underline{y} = (1, 1, 0, 1, {\rm E}, {\rm E}, {\rm E})$. | ||
+ | *The erasure matrix reads: | ||
− | |||
− | |||
− | |||
:$${ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$ | :$${ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | + | Correct are therefore the <u>statements 1, 2 and 4</u>. | |
− | '''(3)''' | + | '''(3)''' One obtains after some matrix multiplications: |
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &0\\ 0 &1 &1 &1\\ 1 &1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} | :$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &0\\ 0 &1 &1 &1\\ 1 &1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} | ||
{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} \hspace{0.05cm}.$$ | { \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | + | By equating it follows $z_{5} = 0, \ z_{6} = 0, \ z_{7} = 1$ ⇒ <u>Suggested solution 2</u>. | |
− | |||
− | |||
− | |||
− | |||
+ | '''(4)''' The matrix comparison shows that the first three columns of $\boldsymbol{\rm H}$ and $\boldsymbol{\rm H}_{\rm K}$ are identical. | ||
+ | * The fourth column of $\boldsymbol{\rm H}_{\rm K}$ is equal to the fifth column of the parity-check matrix. | ||
+ | *From this follows for the vector $z_{\rm E} = (z_{4}, z_{6}, z_{7})$ and further for the received vector $\underline{y} = (1, 1, 0, {\rm E}, 0, {\rm E}, {\rm E})$ ⇒ <u>Suggested solutions 1 and 3</u>. | ||
− | '''(5)''' | + | '''(5)''' Analogous to subtask (3), we now obtain: |
:$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &1\\ 0 &1 &1 &0\\ 1 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} | :$${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &1\\ 0 &1 &1 &0\\ 1 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} | ||
{ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 0 &0 &0\\ 1 &1 &0\\ 1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_4 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} 0 \\ z_4 + z_6 \\ z_4 + z_7 \end{pmatrix} \hspace{0.05cm}.$$ | { \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 0 &0 &0\\ 1 &1 &0\\ 1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_4 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} 0 \\ z_4 + z_6 \\ z_4 + z_7 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | * | + | *If we now set the two column vectors equal, we obtain only two equations for the three unknowns ⇒ <u>Suggested solution 4</u>. |
− | * | + | *Or in other words: If the number of extinctions of the BEC channel is larger than the rank of the matrix $\boldsymbol{\rm H}_{\rm E}$, then no unique solution of the resulting system of equations results. |
− | [[File:P_ID2540__KC_A_1_13f.png|right|frame| | + | [[File:P_ID2540__KC_A_1_13f.png|right|frame|Code table of the systematic $(7, 4, 3)$ Hamming code]] |
− | '''(6)''' | + | '''(6)''' To solve this exercise, we again refer to the systematic Hamming code $(7, 4, 3)$ according to the given parity-check equation and code table. |
− | * | + | *The information bits are shown in black and the parity bits in red. |
− | * | + | *The minimum distance of this code is $d_{\rm min} = 3$. |
<br clear=all> | <br clear=all> | ||
− | + | Further we assume that always the code word $\underline{x} = (1, 1, 0, 1, 0, 0, 1)$ with yellow background was sent. Then holds: | |
− | * | + | *If the number $n_{\rm E}$ of erasures is smaller than $d_{\rm min} = 3$, decoding by the method described here is always possible ⇒ see for example subtask '''(1)''' with $n_{\rm E}= 2$. |
− | * | + | *Also for $n_{\rm E} = d_{\rm min} = 3$ decoding is sometimes possible, as shown in subtask '''(3)'''. In the code table, there is only one codeword that could match the received vector $\underline{y} = (1, 1, 0, 1, {\rm E}, {\rm E}, {\rm E})$ namely the codeword highlighted in yellow $\underline{x} = (1, 1, 0, 1, 0, 0, 1)$ . |
− | * | + | *In contrast $\underline{y} = (1, 1, 0, {\rm E}, 0, {\rm E}, {\rm E})$ according to subtask '''(4)''' could not be decoded. In the code table, besides $(1, 1, 0, 1, 0, 0, 1)$ with $(1, 1, 0, 0, 0, 1, 0)$ one can recognize another code word (highlighted in green), which becomes the received word $\underline{y}$ due to the $n_{\rm E} = 3$ erasures concerning bit 4, 6 and 7. This case, when the $n_{\rm E} = d_{\rm min}$ extinctions affect exactly the $d_{\rm min}$ different bits of two codewords, leads to a matrix $\mathbf{H}_{\rm E}$ with rank smaller $d_{\rm min}$. |
− | * | + | *If $\boldsymbol{\rm H}_{\rm E} > d_{\rm min}$, the number $n - n_{\rm E}$ of bits not erased is smaller than the number $k$ of information bits. In this case, of course, the codeword cannot be decoded. |
− | + | That is: Applicable are the <u>statements 1, 3 and 4</u>. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 22:14, 16 July 2022
We assume here the model in section "Decoding at the Binary Erasure Channel" (BEC configuration highlighted in green):
- Each information word $\underline{u}$ is encoded blockwise and yields the codeword $\underline{x}$. Let the block code be linear and completely given by its parity-check matrix $\boldsymbol{\rm H}$.
- During transmission $n_{\rm E}$ bits of the codeword are erased ⇒ "Binary Erasure Channel" (BEC). The codeword $\underline{x}$ thus becomes the received word $\underline{y}$.
- If the number $n_{\rm E}$ of erasures is less than the "minimum distance" $d_{\rm min}$ of the code, it is possible to reconstruct from $\underline{y}$ the codeword $\underline{z} = \underline{x}$ without error, and thus the correct information word $\underline{v} = \underline{u}$ is also obtained.
For exercise description, let us now consider the Hamming codeword $\underline{x} = (0, 1, 0, 1, 1, 0, 0)$ and the received word $\underline{y} = (0, 1, {\rm E} , {\rm E}, 1, 0, 0).$
- The third and fourth bit were thus erased by the channel.
- The codeword finder thus has the exercise to determine the vector $z_{\rm E} = (z_{3}, z_{4})$ with $z_{3}, \ z_{4} \in \{0, 1\}$ to be determined. This is done according to the equation
- $${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T}= { \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T}\hspace{0.05cm}.$$
- In the present example:
- $$\underline{z}_{\rm K} = (0, 1, 1, 0, 0)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} = \begin{pmatrix} 1 &1 &1 &0 &0\\ 0 &1 &0 &1 &0\\ 1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}, \hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0\\ 1 &1\\ 0 &1 \end{pmatrix} \hspace{0.05cm}.$$
- This equation gives two equations of determination for the bits to be determined, whose solution leads to the result $z_{3} = 0$ and $z_{4} = 1$ .
Hints:
- This exercise belongs to the chapter "Decoding of Linear Block Codes".
- The algorithm for mapping the received word $\underline{y}$ to the correct codeword $\underline{z} = \underline{x}$ is described in detail in the "Theory section" .
- We would like to remind again that in BEC decoding we use the first decoder block $\underline{y} → \underline{z}$ as codeword finder since wrong decisions are excluded here. Each received word is decoded correctly, or it may not be decoded at all.
- In the BSC model, on the other hand, decoding errors cannot be avoided. Accordingly, we refer to the corresponding block there as code word estimator.
Questions
Solution
- $${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &1 &0 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0 &1 \end{pmatrix}$$
of the Hamming code is obtained for vector and matrix
- with respect to all correctly transmitted code symbols (index $\rm K$) known to the code word finder:
- $$\underline{z}_{\rm K} = (1, 0, 1, 0, 0)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm K} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \hspace{0.05cm},$$
- with respect to the two erased code symbols $z_{2}$ and $z_{7}$ (index $\rm E$) to be determined:
- $$\underline{z}_{\rm E} = (z_2, z_7)\hspace{0.05cm},\hspace{0.3cm}{ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \hspace{0.05cm}.$$
The equation of determination is thus:
- $${ \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T}= { \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \begin{pmatrix} 1 &0\\ 1 &0\\ 1 &1 \end{pmatrix} \cdot \begin{pmatrix} z_2 \\ z_7 \end{pmatrix} = \begin{pmatrix} 1 &1 &0 &1 &0\\ 0 &1 &1 &0 &1\\ 1 &0 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm}.$$
This results in three equations for the two unknowns $z_{2}$ and $z_{7}$:
- $${\rm (a)}\ z_{2} = 1,$$
- $${\rm (b)}\ z_{2} = 1,$$
- $${\rm (c)}\ z_{2} + z_{7} = 0 \ \Rightarrow \ z_{7}= 1.$$
Thus, the codeword finder returns $\underline{z} = (1, 1, 0, 1, 0, 0, 1)$ ⇒ Suggested solution 2</2.
(2) Looking at the given matrix $\boldsymbol{\rm H}_{\rm K}$, we see that it coincides with the first four columns of the parity-check matrix $\boldsymbol{\rm H}$.
- The erasures thus affect the last three bits of the received word ⇒ $\underline{z}_{\rm E} = (z_{5}, z_{6}, z_{7}) ⇒ \underline{y} = (1, 1, 0, 1, {\rm E}, {\rm E}, {\rm E})$.
- The erasure matrix reads:
- $${ \boldsymbol{\rm H}}_{\rm E} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
Correct are therefore the statements 1, 2 and 4.
(3) One obtains after some matrix multiplications:
- $${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &0\\ 0 &1 &1 &1\\ 1 &1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} { \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} z_5 \\ z_6 \\ z_7 \end{pmatrix} \hspace{0.05cm}.$$
By equating it follows $z_{5} = 0, \ z_{6} = 0, \ z_{7} = 1$ ⇒ Suggested solution 2.
(4) The matrix comparison shows that the first three columns of $\boldsymbol{\rm H}$ and $\boldsymbol{\rm H}_{\rm K}$ are identical.
- The fourth column of $\boldsymbol{\rm H}_{\rm K}$ is equal to the fifth column of the parity-check matrix.
- From this follows for the vector $z_{\rm E} = (z_{4}, z_{6}, z_{7})$ and further for the received vector $\underline{y} = (1, 1, 0, {\rm E}, 0, {\rm E}, {\rm E})$ ⇒ Suggested solutions 1 and 3.
(5) Analogous to subtask (3), we now obtain:
- $${ \boldsymbol{\rm H}}_{\rm K} \cdot \underline{z}_{\rm K}^{\rm T} = \begin{pmatrix} 1 &1 &1 &1\\ 0 &1 &1 &0\\ 1 &1 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \hspace{0.05cm},\hspace{1cm} { \boldsymbol{\rm H}}_{\rm E} \cdot \underline{z}_{\rm E}^{\rm T} = \begin{pmatrix} 0 &0 &0\\ 1 &1 &0\\ 1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} z_4 \\ z_6 \\ z_7 \end{pmatrix} = \begin{pmatrix} 0 \\ z_4 + z_6 \\ z_4 + z_7 \end{pmatrix} \hspace{0.05cm}.$$
- If we now set the two column vectors equal, we obtain only two equations for the three unknowns ⇒ Suggested solution 4.
- Or in other words: If the number of extinctions of the BEC channel is larger than the rank of the matrix $\boldsymbol{\rm H}_{\rm E}$, then no unique solution of the resulting system of equations results.
(6) To solve this exercise, we again refer to the systematic Hamming code $(7, 4, 3)$ according to the given parity-check equation and code table.
- The information bits are shown in black and the parity bits in red.
- The minimum distance of this code is $d_{\rm min} = 3$.
Further we assume that always the code word $\underline{x} = (1, 1, 0, 1, 0, 0, 1)$ with yellow background was sent. Then holds:
- If the number $n_{\rm E}$ of erasures is smaller than $d_{\rm min} = 3$, decoding by the method described here is always possible ⇒ see for example subtask (1) with $n_{\rm E}= 2$.
- Also for $n_{\rm E} = d_{\rm min} = 3$ decoding is sometimes possible, as shown in subtask (3). In the code table, there is only one codeword that could match the received vector $\underline{y} = (1, 1, 0, 1, {\rm E}, {\rm E}, {\rm E})$ namely the codeword highlighted in yellow $\underline{x} = (1, 1, 0, 1, 0, 0, 1)$ .
- In contrast $\underline{y} = (1, 1, 0, {\rm E}, 0, {\rm E}, {\rm E})$ according to subtask (4) could not be decoded. In the code table, besides $(1, 1, 0, 1, 0, 0, 1)$ with $(1, 1, 0, 0, 0, 1, 0)$ one can recognize another code word (highlighted in green), which becomes the received word $\underline{y}$ due to the $n_{\rm E} = 3$ erasures concerning bit 4, 6 and 7. This case, when the $n_{\rm E} = d_{\rm min}$ extinctions affect exactly the $d_{\rm min}$ different bits of two codewords, leads to a matrix $\mathbf{H}_{\rm E}$ with rank smaller $d_{\rm min}$.
- If $\boldsymbol{\rm H}_{\rm E} > d_{\rm min}$, the number $n - n_{\rm E}$ of bits not erased is smaller than the number $k$ of information bits. In this case, of course, the codeword cannot be decoded.
That is: Applicable are the statements 1, 3 and 4.