Difference between revisions of "Aufgaben:Exercise 1.12: Hard Decision vs. Soft Decision"

From LNTwww
Line 70: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Every Hamming code is perfect and has the minimum distance $d_{\rm min} = 3$.  
+
'''(1)'''  Every Hamming code is perfect and has the minimum distance  $d_{\rm min} = 3$.  
*Therefore, one bit error in the codeword can be corrected, while two bit errors will always cause the codeword to fail   ⇒   parameter $t = 1$.  
+
*Therefore,  one bit error in the code word can be corrected,  while two bit errors will always cause the code word to fail   ⇒   parameter  $t = 1$.  
*Thus, for the block error probability:
+
*Thus,  for the block error probability:
  
 
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
 
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
Line 79: Line 79:
  
  
'''(2)'''  Each $(n, \, k, \, 3)$ Hamming code can correct only one bit error. Thus, for the BSC channel, the general rule is with codeword length $n$:
+
'''(2)'''  Each  $(n, \, k, \, 3)$  Hamming code can correct only one bit error.  Thus,  for the BSC channel,  the general rule is with code word length  $n$:
  
 
:$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)}  = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
 
:$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)}  = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
*After series expansion of   $(1 - \varepsilon)^n$   or of   $n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$   we obtain from this:
+
*After series expansion of   "$(1 - \varepsilon)^n$"   or of   "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$"   we obtain from this:
 
:$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
 
:$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
  
*If we neglect all terms with $\varepsilon^3, \ \varepsilon^4, \ \text{...}$  we finally get:
+
*If we neglect all terms with  $\varepsilon^3, \ \varepsilon^4, \ \text{...}$  we finally get:
  
 
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$
 
:$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$
  
The correct solution is <u>suggestion 1</u>.
+
The correct solution is&nbsp; <u>suggestion 1</u>.
  
For the $(7, \, 4, \, 3)$ Hamming code, it follows:  
+
For the&nbsp; $(7, \, 4, \, 3)$&nbsp; Hamming code,&nbsp; it follows:  
  
 
:$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
 
:$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
  
*By comparison with the result of the subtask (1) one recognizes the validity of this approximation.  
+
*By comparison with the result of the subtask&nbsp; '''(1)'''&nbsp; one recognizes the validity of this approximation.&nbsp; The smaller the BSC falsification probability $\varepsilon$,&nbsp; the better it is.
*The smaller the BSC corruption probability $\varepsilon$, the better it is.
 
  
  
  
'''(3)'''&nbsp; The results of subtask (2) can be summarized as follows:
+
'''(3)'''&nbsp; The results of subtask&nbsp; '''(2)'''&nbsp; can be summarized as follows:
  
 
:$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
 
:$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
  
*Right is <u>answer 1</u>.  
+
*Right is <u>answer 1</u>.&nbsp; Of course, the Hamming code with the lowest rate&nbsp; $R = 1/3$,&nbsp; i.e. with the greatest relative redundancy,&nbsp; has the lowest block error probability.
*Of course, the Hamming code with the lowest rate $R = 1/3$, i.e. with the greatest relative redundancy, has the lowest block error probability.
 
  
  
'''(4)'''&nbsp;  At Hard Decision, with the complementary Gaussian error function ${\rm Q}(x)$:
+
'''(4)'''&nbsp;  At Hard Decision,&nbsp; with the complementary Gaussian error function&nbsp; ${\rm Q}(x)$:
  
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm}  
 
:$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm}  
 
  \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
 
  \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
  
*From this we obtain with $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
+
*From this we obtain with&nbsp; $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
  
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
Line 121: Line 119:
  
  
'''(5)'''&nbsp; Here we refer to the block error probability $10^{–5}$.  
+
'''(5)'''&nbsp; Here we refer to the block error probability&nbsp; $10^{–5}$.  
  
*According to the result of subtask (2), the BSC corruption probability must then not be greater than
+
*According to the result of subtask&nbsp; '''(2)''',&nbsp; the BSC falsification probability must then not be greater than
  
 
:$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
 
:$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
  
*For''Soft Decision'' according to specification $8 \ {\rm dB} suffices \ ⇒ \ 10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.
+
*For&nbsp; "Soft Decision"&nbsp; according to the specification graph:&nbsp; $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$ &nbsp; &rArr; &nbsp;  $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 13:22, 20 July 2022

Block error rate of the  $\rm HC(7, \, 4, \, 3)$  for
"Hard Decision" and "Soft Decision" Korrektur

The figure shows the block error probability for the  "$(7, \, 4, \, 3)$ Hamming code",  where two variants are considered for the receiver:

  • Maximum likelihood decoding with hard decisions  $($"Hard Decision",  $\rm HD)$,  which in the present case  $($perfect code$)$  can also be realized by syndrome decoding,  yields the red curve  $($with circle marker$)$.
  • The channel can be replaced by the BSC model in a simplified way for  "Hard Decision".  The relationship between the BSC parameter  $\varepsilon$  and the AWGN quotient  $E_{\rm B}/N_{0}$  $($used in the graph$)$ is given as follows:
$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
Here  ${\rm Q}(x)$  denotes the  "complementary Gaussian error function"  and  $R$  the code rate.
  • The green curve  $($with crosses$)$ shows the block error probability for soft decisions  $($"Soft Decision",  $\rm SD)$.  This curve cannot be given in closed-mathematical form.  The curve drawn in the graph is an upper bound given in  [Fri96]:
$$ {\rm Pr(block\:error)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
  1. The respective first factor in the arguments of the  $\rm Q$–function indicates Hamming distances   ⇒   $i = 3, \, 4, \, 7$.
  2. The prefactors take into account  "multiplicities"  $W_{3} = W_{4} = 7$  and  $W_{7} = 1$.  
  3. $R = 4/7$  describes the code rate.
  4. For  $10 · \lg {E_{\rm B}/N_0} > 8 \ \rm dB$  ⇒   $\rm Pr(block\:error) < 10^{–5}$.



Hints:

  • The above cited bibliography  [Fri96]  refers to the book
    "Friedrichs, B.: Kanalcodierung - Grundlagen und Anwendungen in modernen Kommunikationssystemen. Berlin - Heidelberg: Springer, 1996".
  • For the subtasks  (1)  to  (4),  "Hard Decision" is always assumed.



Questions

1

What is the block error probability of the  $(7, \, 4, \, 3)$ Hamming code in  "Hard Decision"?

$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-3} $
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \ = \ $

$\ \cdot 10^{-3} $

2

How can we approximate the block error probability of a Hamming code,  assuming "Hard Decision"?

${\rm Pr(block\:error)} = n · (n–1)/2 · \varepsilon^2.$
${\rm Pr(block\:error)} = n · \varepsilon^2.$
${\rm Pr(block\:error)} = n · \varepsilon^n.$

3

Which Hamming code has the smallest block error probability with constant BSC parameter  $\varepsilon$?

the Hamming code  $(3, \, 1, \, 3)$,  identical to the  "repetition code"  $\rm RC \ (3, \, 1, \, 3)$,
the Hamming code  $(7, \, 4, \, 3)$,
the Hamming code  $(15, \, 11, \, 3)$.

4

What is the numerical relationship between the BSC parameter  $\varepsilon$  and the AWGN quotient  $E_{\rm B}/N_{0}$?

$\varepsilon = 10^{-2}\text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$
$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} 10 · \lg {E_{\rm B}/N_0} \ = \ $

$\ \rm dB$

5

What is the gain  $($in dB$)$  to be achieved by  "Soft Decision"  if the block error probability is not to exceed  $10^{-5}$ ?

$\ 10 · \lg \, {G_{\rm SD}} \ = \ $

$ \ \rm dB$


Solution

(1)  Every Hamming code is perfect and has the minimum distance  $d_{\rm min} = 3$.

  • Therefore,  one bit error in the code word can be corrected,  while two bit errors will always cause the code word to fail   ⇒   parameter  $t = 1$.
  • Thus,  for the block error probability:
$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - {\rm Pr(no\hspace{0.15cm} block\:error)} - {\rm Pr(one\hspace{0.15cm} block\:error)} = 1 - (1 - \varepsilon)^7 - 7 \cdot \varepsilon \cdot (1 - \varepsilon)^6 \hspace{0.05cm}.$$
$$\varepsilon = 10^{-2} \text{:} \hspace{0.4cm}{\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.99^7 - 7 \cdot 0.01 \cdot 0.99^6= 1 - 0.932065 - 0.065904\hspace{0.15cm}\underline{\approx 2.03 \cdot 10^{-3}}\hspace{0.05cm},$$
$$\varepsilon = 10^{-3} \text{:} \hspace{0.4cm} {\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 1 - 0.999^7 - 7 \cdot 0.001 \cdot 0.999^6= 1 - 0.993021 - 0.006958\hspace{0.15cm}\underline{\approx 0.0209 \cdot 10^{-3}}\hspace{0.05cm}.$$


(2)  Each  $(n, \, k, \, 3)$  Hamming code can correct only one bit error.  Thus,  for the BSC channel,  the general rule is with code word length  $n$:

$${\rm Pr(block\:error)} = 1 - \text{Pr(no bit error)} - \text{Pr(one bit error)} = 1 - (1 - \varepsilon)^n - n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}.$$
  • After series expansion of   "$(1 - \varepsilon)^n$"   or of   "$n \cdot \varepsilon \cdot (1 - \varepsilon)^{n-1}$"   we obtain from this:
$${\rm Pr(block\:error)} = 1 - \left [ 1 - {n \choose 1}\cdot \varepsilon + {n \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm} \right ] -\left [ n \cdot \varepsilon \cdot \left ( 1 - {{n-1} \choose 1}\cdot \varepsilon + {{n-1} \choose 2}\cdot \varepsilon^2 - \hspace{0.05cm}\text{...} \hspace{0.05cm}\right ) \right ] \hspace{0.05cm}.$$
  • If we neglect all terms with  $\varepsilon^3, \ \varepsilon^4, \ \text{...}$  we finally get:
$${\rm Pr(block\:error)} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} n \cdot \varepsilon - {n \choose 2}\cdot \varepsilon^2 - n \cdot \varepsilon + n \cdot \varepsilon {{n-1} \choose 1}\cdot \varepsilon + \hspace{0.05cm}\text{...}\hspace{0.05cm} = -n/2 \cdot (n-1)\cdot \varepsilon^2 + n \cdot (n-1)\cdot \varepsilon^2 = n \cdot (n-1)/2 \cdot \varepsilon^2 \hspace{0.05cm}.$$

The correct solution is  suggestion 1.

For the  $(7, \, 4, \, 3)$  Hamming code,  it follows:

$${\rm Pr(block\:error)} \le \left\{ \begin{array}{c} 2.03 \cdot 10^{-3}\\ 2.09 \cdot 10^{-5} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}\hspace{0.15cm} \varepsilon = 10^{-2} \\ {\rm for}\hspace{0.15cm} \varepsilon = 10^{-3} \\ \end{array} \hspace{0.05cm}.$$
  • By comparison with the result of the subtask  (1)  one recognizes the validity of this approximation.  The smaller the BSC falsification probability $\varepsilon$,  the better it is.


(3)  The results of subtask  (2)  can be summarized as follows:

$${\rm Pr(block\:error)} = \left\{ \begin{array}{l} 3 \cdot \varepsilon^2 \\ 21 \cdot \varepsilon^2\\ 105 \cdot \varepsilon^2\\ \end{array} \right.\quad \begin{array}{*{1}l} {\rm for}\hspace{0.15cm} n = 3 \\ {\rm for}\hspace{0.15cm} n = 7 \\ {\rm for}\hspace{0.15cm} n = 15 \\ \end{array} \hspace{0.05cm}.$$
  • Right is answer 1.  Of course, the Hamming code with the lowest rate  $R = 1/3$,  i.e. with the greatest relative redundancy,  has the lowest block error probability.


(4)  At Hard Decision,  with the complementary Gaussian error function  ${\rm Q}(x)$:

$$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right )\hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_{\rm B}/N_0 = \frac{[{\rm Q}^{-1}(\varepsilon)]^2}{2R}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}[{\rm Q}^{-1}(\varepsilon)] - 10 \cdot {\rm lg} \hspace{0.1cm} (2R) \hspace{0.05cm}.$$
  • From this we obtain with  $\varepsilon = 0.01 \ ⇒ \ {\rm Q}^{–1}(\varepsilon) = 2.33$:
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(2.33) - 10 \cdot {\rm lg} \hspace{0.1cm} (8/7) = 7.35\,{\rm dB} - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 6.77\,{\rm dB}}\hspace{0.05cm}.$$
$$10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 20 \cdot {\rm lg} \hspace{0.1cm}(3.09) - 0.58\,{\rm dB}\hspace{0.15cm}\underline{\approx 9.22\,{\rm dB}}\hspace{0.05cm}.$$


(5)  Here we refer to the block error probability  $10^{–5}$.

  • According to the result of subtask  (2),  the BSC falsification probability must then not be greater than
$$\varepsilon = \sqrt{{10^{-5}}/{21}} = 6.9 \cdot 10^{-4} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q}^{-1}(\varepsilon) = 3.2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 9.52\,{\rm dB}\hspace{0.05cm}.$$
  • For  "Soft Decision"  according to the specification graph:  $10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 = 8\,{\rm dB}\hspace{0.05cm}$   ⇒   $10 · \lg {G_{\rm SD}} \ \underline{= 1.52 \ {\rm dB}}$.