Difference between revisions of "Aufgaben:Exercise 2.5Z: Some Calculations about GF(2 power 3)"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Extension_Field}} |
− | [[File:EN_KC_Z_2_5.png|right|frame| | + | [[File:EN_KC_Z_2_5.png|right|frame|Elements of $\rm GF(2^3)$ for the polynomial $p(x) = x^3 + x + 1$] |
− | + | We now consider the extension field with eight elements ⇒ $\rm GF(2^3)$ according to the adjacent table. Since the underlying polynomial | |
:$$p(x) = x^3 + x +1 $$ | :$$p(x) = x^3 + x +1 $$ | ||
− | + | is both irreducible and primitive, the Galois field at hand can be stated in the following form: | |
:$${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm} | :$${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm} | ||
\alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$ | \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$ | ||
− | + | The element $\alpha$ results thereby as solution of the equation $p(\alpha) = 0$ in the Galois field $\rm GF(2)$. | |
− | * | + | *This gives the following constraint: |
:$$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$ | :$$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$ | ||
− | * | + | *The following calculations apply to the other elements: |
:$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},$$ | :$$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},$$ | ||
:$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^2 +\alpha) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1\hspace{0.05cm},$$ | :$$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^2 +\alpha) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1\hspace{0.05cm},$$ | ||
:$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha= \alpha + 1 + \alpha^2 + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$ | :$$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha= \alpha + 1 + \alpha^2 + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$ | ||
− | In | + | In this exercise you are to do some algebraic transformations in the Galois field $\rm GF(2^3)$ . Among other things you are asked for the multiplicative inverse of the element $\alpha^4$ . Then it must hold: |
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$ | :$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$ | ||
Line 28: | Line 28: | ||
− | + | Hints: | |
− | * | + | * This exercise belongs to the chapter [[Channel_Coding/Extension_Field| "extension field"]]. |
− | * | + | * This exercise is intended as a supplement to the slightly more difficult [[Aufgaben:Exercise_2.5:_Three_Variants_of_GF(2_power_4)|"Exercise 2.5"]] . |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the statements are true for the higher powers of $\alpha^{i} \ (i ≥ 7)$ true? |
|type="[]"} | |type="[]"} | ||
+ $\alpha^7 = 1$, | + $\alpha^7 = 1$, | ||
Line 44: | Line 44: | ||
+ $\alpha^i = \alpha^{i \ \rm mod \, 7}$. | + $\alpha^i = \alpha^{i \ \rm mod \, 7}$. | ||
− | { | + | {Which transformation is allowed for $A = \alpha^8 + \alpha^6 - \alpha^2 + 1$ ? |
|type="()"} | |type="()"} | ||
- $A = 1$, | - $A = 1$, | ||
Line 52: | Line 52: | ||
- $A = \alpha^4$. | - $A = \alpha^4$. | ||
− | { | + | {Which transformation is allowed for $B = \alpha^{16} - \alpha^{12} \cdot \alpha^3$ permissible? |
|type="()"} | |type="()"} | ||
- $B = 1$, | - $B = 1$, | ||
Line 60: | Line 60: | ||
+ $B = \alpha^4$. | + $B = \alpha^4$. | ||
− | { | + | {What transformation is allowed for $C = \alpha^3 + \alpha$ ? |
|type="()"} | |type="()"} | ||
+ $C = 1$, | + $C = 1$, | ||
Line 68: | Line 68: | ||
- $C = \alpha^4$. | - $C = \alpha^4$. | ||
− | { | + | {What transformation is allowed for $D = \alpha^4 + \alpha$ ? |
|type="()"} | |type="()"} | ||
- $D = 1$, | - $D = 1$, | ||
Line 76: | Line 76: | ||
- $D = \alpha^4$. | - $D = \alpha^4$. | ||
− | { | + | {Which transformation is allowed for $E = A \cdot B \cdot C/D$ ? |
|type="()"} | |type="()"} | ||
- $E = 1$, | - $E = 1$, | ||
Line 84: | Line 84: | ||
- $E = \alpha^4$. | - $E = \alpha^4$. | ||
− | { | + | {What statements hold for the multiplicative inverse to $\alpha^2 + \alpha$? |
|type="[]"} | |type="[]"} | ||
- ${\rm Inv_M}(\alpha^2 + \alpha) = 1$, | - ${\rm Inv_M}(\alpha^2 + \alpha) = 1$, | ||
Line 92: | Line 92: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' For example, using the table given in the front, you can find: |
:$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$ | :$$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$ | ||
:$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$ | :$$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$ | ||
:$$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 + 1\hspace{0.05cm}.$$ | :$$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 + 1\hspace{0.05cm}.$$ | ||
− | + | The table can therefore be continued modulo $7$. This means: <u>All proposed solutions</u> are correct. | |
− | '''(2)''' | + | '''(2)''' Correct is the <u>proposed solution 2</u> because of. |
− | *$\alpha^8 = \alpha$ | + | *$\alpha^8 = \alpha$ according to subtask (1), |
− | *$\alpha^6 = \alpha^2 + 1$ ( | + | *$\alpha^6 = \alpha^2 + 1$ (according to table), and |
− | *$-\alpha^2 = \alpha^2$ ( | + | *$-\alpha^2 = \alpha^2$ (operations in the binary Galois field). |
− | + | So applies: | |
− | |||
:$$A = \alpha^8 + \alpha^6 - \alpha^2 + 1 = \alpha + (\alpha^2 + 1) + \alpha^2 + 1 = \alpha | :$$A = \alpha^8 + \alpha^6 - \alpha^2 + 1 = \alpha + (\alpha^2 + 1) + \alpha^2 + 1 = \alpha | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 115: | Line 114: | ||
− | '''(3)''' | + | '''(3)''' With $\alpha^{16} = \alpha^{16-14} = \alpha^2$ sowie $\alpha^{12} \cdot \alpha^3 = \alpha^{15} = \alpha^{15-14} = \alpha$ we obtain the <u>proposed solution 5</u>: |
:$$B = \alpha^2 + \alpha= \alpha^4 | :$$B = \alpha^2 + \alpha= \alpha^4 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 121: | Line 120: | ||
− | '''(4)''' | + | '''(4)''' It holds $\alpha^3 = \alpha + 1$ und damit $C = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$ ⇒ <u>Proposed solution 1</u>. |
− | '''(5)''' | + | '''(5)''' With $\alpha^4 = \alpha^2 + \alpha$ we obtain $D = \alpha^4 + \alpha = \alpha^2$ ⇒ <u>Proposed solution 3</u>. |
− | '''(6)''' | + | '''(6)''' Correct is the <u>proposed solution 4</u>: |
:$$E = A \cdot B \cdot C/D = \alpha \cdot \alpha^4 \cdot 1/\alpha^2 = \alpha^3 | :$$E = A \cdot B \cdot C/D = \alpha \cdot \alpha^4 \cdot 1/\alpha^2 = \alpha^3 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | '''(7)''' According to the table, $\alpha^2 + \alpha = \alpha^4$ holds. Therefore must be valid: | |
− | '''(7)''' | ||
:$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | :$$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} | ||
{\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3 | {\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Because of $\alpha^3 = \alpha + 1$ the <u>proposed solutions 2 and 3</u> are correct. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
[[Category:Channel Coding: Exercises|^2.2 Extension Field^]] | [[Category:Channel Coding: Exercises|^2.2 Extension Field^]] |
Revision as of 22:06, 31 August 2022
[[File:EN_KC_Z_2_5.png|right|frame|Elements of $\rm GF(2^3)$ for the polynomial $p(x) = x^3 + x + 1$] We now consider the extension field with eight elements ⇒ $\rm GF(2^3)$ according to the adjacent table. Since the underlying polynomial
- $$p(x) = x^3 + x +1 $$
is both irreducible and primitive, the Galois field at hand can be stated in the following form:
- $${\rm GF}(2^3) = \{\hspace{0.1cm}0\hspace{0.05cm},\hspace{0.1cm} 1,\hspace{0.05cm}\hspace{0.1cm} \alpha\hspace{0.05cm},\hspace{0.1cm} \alpha^{2}\hspace{0.05cm},\hspace{0.1cm} \alpha^{3}\hspace{0.05cm},\hspace{0.1cm} \alpha^{4}\hspace{0.05cm},\hspace{0.1cm} \alpha^{5}\hspace{0.05cm},\hspace{0.1cm} \alpha^{6}\hspace{0.1cm}\}\hspace{0.05cm}. $$
The element $\alpha$ results thereby as solution of the equation $p(\alpha) = 0$ in the Galois field $\rm GF(2)$.
- This gives the following constraint:
- $$\alpha^3 + \alpha +1 = 0\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \alpha^3 = \alpha +1\hspace{0.05cm}.$$
- The following calculations apply to the other elements:
- $$\alpha^4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^3 = \alpha \cdot (\alpha + 1) = \alpha^2 + \alpha \hspace{0.05cm},$$
- $$\alpha^5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^4 = \alpha \cdot (\alpha^2 +\alpha) = \alpha^3 + \alpha^2 = \alpha^2 + \alpha + 1\hspace{0.05cm},$$
- $$\alpha^6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^5 = \alpha \cdot (\alpha^2 +\alpha + 1)= \alpha^3 + \alpha^2 + \alpha= \alpha + 1 + \alpha^2 + \alpha = \alpha^2+ 1\hspace{0.05cm}.$$
In this exercise you are to do some algebraic transformations in the Galois field $\rm GF(2^3)$ . Among other things you are asked for the multiplicative inverse of the element $\alpha^4$ . Then it must hold:
- $$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.05cm}.$$
Hints:
- This exercise belongs to the chapter "extension field".
- This exercise is intended as a supplement to the slightly more difficult "Exercise 2.5" .
Questions
Solution
- $$\alpha^7 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^6 = \alpha \cdot (\alpha^2 + 1) = \alpha^3 + \alpha = (\alpha + 1) + \alpha = 1 \hspace{0.05cm},$$
- $$\alpha^8 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha \cdot \alpha^7 = \alpha \cdot 1 = \alpha\hspace{0.05cm},$$
- $$\alpha^{13} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^7 \cdot \alpha^6 = 1 \cdot \alpha^6 = \alpha^2 + 1\hspace{0.05cm}.$$
The table can therefore be continued modulo $7$. This means: All proposed solutions are correct.
(2) Correct is the proposed solution 2 because of.
- $\alpha^8 = \alpha$ according to subtask (1),
- $\alpha^6 = \alpha^2 + 1$ (according to table), and
- $-\alpha^2 = \alpha^2$ (operations in the binary Galois field).
So applies:
- $$A = \alpha^8 + \alpha^6 - \alpha^2 + 1 = \alpha + (\alpha^2 + 1) + \alpha^2 + 1 = \alpha \hspace{0.05cm}.$$
(3) With $\alpha^{16} = \alpha^{16-14} = \alpha^2$ sowie $\alpha^{12} \cdot \alpha^3 = \alpha^{15} = \alpha^{15-14} = \alpha$ we obtain the proposed solution 5:
- $$B = \alpha^2 + \alpha= \alpha^4 \hspace{0.05cm}.$$
(4) It holds $\alpha^3 = \alpha + 1$ und damit $C = \alpha^3 + \alpha = \alpha + 1 + \alpha = 1$ ⇒ Proposed solution 1.
(5) With $\alpha^4 = \alpha^2 + \alpha$ we obtain $D = \alpha^4 + \alpha = \alpha^2$ ⇒ Proposed solution 3.
(6) Correct is the proposed solution 4:
- $$E = A \cdot B \cdot C/D = \alpha \cdot \alpha^4 \cdot 1/\alpha^2 = \alpha^3 \hspace{0.05cm}.$$
(7) According to the table, $\alpha^2 + \alpha = \alpha^4$ holds. Therefore must be valid:
- $$\alpha^4 \cdot {\rm Inv_M}( \alpha^4) = 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm} {\rm Inv_M}( \alpha^2 + \alpha) = {\rm Inv_M}( \alpha^4) = \alpha^{-4} = \alpha^3 \hspace{0.05cm}.$$
Because of $\alpha^3 = \alpha + 1$ the proposed solutions 2 and 3 are correct.