Difference between revisions of "Aufgaben:Exercise 2.08: Generator Polynomials for Reed-Solomon"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Kanalcodierung" to "Category:Channel Coding: Exercises")
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Definition und Eigenschaften von Reed–Solomon–Codes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes}}
  
[[File:P_ID2525__KC_A_2_8.png|right|frame|Vier Generatormatrizen, drei davon beschreiben Reed–Solomon–Codes]]
+
[[File:P_ID2525__KC_A_2_8.png|right|frame|Four generator matrices, three of which describe Reed-Solomon codes]]
In der  [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]]  sollten Sie die Codeworte des  $\rm RSC \, (7, \, 3, \, 5)_8$  über ein Polynom ermitteln. Man kann aber das Codewort  $\underline{c}$  auch aus dem Informationswort  $\underline{u}$  und der Generatormatrix  $\mathbf{G}$  gemäß der folgenden Gleichung bestimmen:
+
In the  [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|"Exercise 2.7"]]  you should determine the codewords of the  $\rm RSC \, (7, \, 3, \, 5)_8$  via a polynomial. However, you can also determine the codeword  $\underline{c}$  from the information word  $\underline{u}$  and the generator matrix  $\mathbf{G}$  according to the following equation:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Zwei dieser Generatormatrizen beschreiben den  $\rm RSC \, (7, \, 3, \, 5)_8$. In der Teilaufgabe '''(1)''' ist explizit gefragt, welche.  
+
*Two of these generator matrices describe the  $\rm RSC \, (7, \, 3, \, 5)_8$. In the subtask '''(1)''' is explicitly asked which.  
*Eine weitere Generatormatrix gehört zum  $\rm RSC \, (7, \, 5, \, 3)_8$, der in der Teilaufgabe '''(3)''' betrachtet wird.
+
*Another generator matrix belongs to  $\rm RSC \, (7, \, 5, \, 3)_8$, which is considered in subtask '''(3)'''.
  
  
Line 15: Line 15:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
+
* This task belongs to the chapter  [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes| "Definition und Eigenschaften von Reed–Solomon Codes"]].
* Wichtige Informationen zu den Reed–Solomon–Codes finden Sie auch in der  [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8| Aufgabe 2.7]].
+
* Important information about Reed–Solomon codes can also be found in the  [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8| "Exercise 2.7"]].
  
  
Line 23: Line 23:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Generatorpolynome beschreiben den&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$?
+
{Which of the generator polynomials describe the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$?
 
|type="[]"}
 
|type="[]"}
- Die Matrix&nbsp; $\mathbf{G}_{\rm A}$,
+
- the matrix&nbsp; $\mathbf{G}_{\rm A}$,
+ die Matrix&nbsp; $\mathbf{G}_{\rm B}$,
+
+ the matrix&nbsp; $\mathbf{G}_{\rm B}$,
+ die Matrix&nbsp; $\mathbf{G}_{\rm C}$,
+
+ the matrix&nbsp; $\mathbf{G}_{\rm C}$,
- die Matrix&nbsp; $\mathbf{G}_{\rm D}$.
+
- the matrix&nbsp; $\mathbf{G}_{\rm D}$.
  
{Die Informationsfolge beginnt mit&nbsp; $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Bestimmen Sie das erste Codewort für den&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$.
+
{The information sequence starts with&nbsp; $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Determine the first codeword for the&nbsp; $\rm RSC \, (7, \, 3, \, 5)_8$.
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $c_0 = \alpha^2$,
+
+ It holds&nbsp; $c_0 = \alpha^2$,
+ Es gilt&nbsp; $c_1 = \alpha^3$,
+
+ It holds&nbsp; $c_1 = \alpha^3$,
- Es gilt&nbsp; $c_6 = 0$.
+
- It holds&nbsp; $c_6 = 0$.
  
{Wie lautet bei gleicher Informationsfolge das Codewort für den&nbsp; $\rm RSC \, (7, \, 5, \, 3)_8$?
+
{What is the codeword for the&nbsp; $\rm RSC \, (7, \, 5, \, 3)_8$ given the same sequence of information?
 
|type="[]"}
 
|type="[]"}
+ Es gilt&nbsp; $c_0 = 1$,
+
+ It holds&nbsp; $c_0 = 1$,
+ Es gilt&nbsp; $c_1 = 0$,
+
+ It holds&nbsp; $c_1 = 0$,
+ Es gilt&nbsp; $c_6 = \alpha^6$.
+
+ It holds&nbsp; $c_6 = \alpha^6$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u> &nbsp;&#8658;&nbsp; Matrizen $\mathbf{G}_{\rm B}$ und $\mathbf{G}_{\rm C}$.  
+
'''(1)'''&nbsp; Correct are the <u>solutions 2 and 3</u> &nbsp;&#8658;&nbsp; matrices $\mathbf{G}_{\rm B}$ and $\mathbf{G}_{\rm C}$.  
*In der Matrix $\mathbf{G}_{\rm C}$ wurden bereits die erlaubten Umformungen&nbsp; $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$&nbsp; und&nbsp; $\alpha^{12} = \alpha^5$&nbsp; berücksichtigt.  
+
*In the matrix $\mathbf{G}_{\rm C}$ the allowed transformations&nbsp; $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$&nbsp; and&nbsp; $\alpha^{12} = \alpha^5$&nbsp; have already been considered.  
*Die Matrix $\mathbf{G}_{\rm A}$ gilt für den $(7, \, 5, \, 3)$&ndash;Hamming&ndash;Code und $\mathbf{G}_{\rm D}$ gehört zum $\rm RSC \, (7, \, 5, \, 3)_8$. Siehe hierzu Teilaufgabe (3).
+
*The matrix $\mathbf{G}_{\rm A}$ holds for the $(7, \, 5, \, 3)$&ndash;Hamming code and $\mathbf{G}_{\rm D}$ belongs to the $\rm RSC \, (7, \, 5, \, 3)_8$. See subtask (3) for more details.
  
  
  
'''(2)'''&nbsp; Beim $\rm RSC \, (7, \, 3, \, 5)_8$ werden in jedem Codierschritt $k = 3$ Informationssymbole verarbeitet, im Codierschritt 1 gemäß der Angabe die Symbole $\alpha^4, \ 1$ und $\alpha^3$.  
+
'''(2)'''&nbsp; In the $\rm RSC \, (7, \, 3, \, 5)_8$ information symbols are processed in each coding step $k = 3$, in coding step 1 according to the specification the symbols $\alpha^4, \ 1$ and $\alpha^3$.  
  
[[File:P_ID2584__KC_T_2_5_Darstellung.png|right|frame|$\rm GF(2^3)$ als Potenzen, Polynome und Vektoren]]  
+
[[File:P_ID2584__KC_T_2_5_Darstellung.png|right|frame|$\rm GF(2^3)$ as powers, polynomials and vectors ]]  
*Mit der Generatormatrix $\mathbf{G}_{\rm C}$ gilt somit:
+
*With the generator matrix $\mathbf{G}_{\rm C}$ thus holds:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 67: Line 67:
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
  
*Damit ergibt sich entsprechend der nebenstehenden Hilfstabelle:
+
*This results according to the adjacent auxiliary table:
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1 =
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
 
(110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
Line 83: Line 83:
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
 
  (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  
*Man erhält das genau gleiche Ergebnis wie in der Teilaufgabe (4) von [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|Aufgabe 2.7]]. Richtig sind die <u>Lösungsvorschläge 1 und 2</u>.  
+
*You get exactly the same result as in subtask (4) of [[Aufgaben:Aufgabe_2.07:_Reed–Solomon–Code_(7,_3,_5)_zur_Basis_8|"Exercise 2.7"]]. Correct are <u>solutions 1 and 2</u>.  
*Es gilt also nicht $c_6 = 0$, sondern $c_6 = 1$.
+
*So it is not $c_6 = 0$, but $c_6 = 1$.
  
  
  
'''(3)'''&nbsp; Beim $\rm RSC \, (7, \, 5, \, 3)_8$ ist das Informationswort $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ zu berücksichtigen.  
+
'''(3)'''&nbsp; At $\rm RSC \, (7, \, 5, \, 3)_8$, the information word $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ must be considered.  
*Mit der Generatormatrix $\mathbf{G}_{\rm D}$ erhält man:
+
*With the generator matrix $\mathbf{G}_{\rm D}$ one obtains:
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
:$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} =
 
\begin{pmatrix}
 
\begin{pmatrix}
Line 102: Line 102:
 
\end{pmatrix}\hspace{0.05cm}. $$
 
\end{pmatrix}\hspace{0.05cm}. $$
  
*Daraus folgt:
+
*From this it follows:
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
 
:$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \alpha^{4}\cdot 1  + 1 \cdot 1 +  \alpha^{3}\cdot 1  + 0 \cdot 1 +  \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) +  (101) = (001) = 1 \hspace{0.05cm},$$
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
 
:$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} +  \alpha^{6}\cdot \alpha^{4}=  \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  
*Hierbei ist berücksichtigt, dass der Klammerausdruck $[ \ \text{...} \ ]$ genau dem Ergebnis $c_1$ der Teilaufgabe (2) entspricht.
+
*This takes into account that the bracket expression $[ \ \text{...} \ ]$ corresponds exactly to the result $c_1$ of subtask (2).
  
*Entsprechendes wird auch bei den folgenden Berechnungen berücksichtigt:
+
*Corresponding is also considered in the following calculations:
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
:$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm}    \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}=
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
 
\left [ \alpha^{3} \right ] + \alpha^{7} =
Line 124: Line 124:
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
 
  =  (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  
*Das heißt: <u>Alle Lösungsvorschläge</u> sind richtig.
+
*This means: <u>All proposed solutions</u> are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 12:29, 2 September 2022

Four generator matrices, three of which describe Reed-Solomon codes

In the  "Exercise 2.7"  you should determine the codewords of the  $\rm RSC \, (7, \, 3, \, 5)_8$  via a polynomial. However, you can also determine the codeword  $\underline{c}$  from the information word  $\underline{u}$  and the generator matrix  $\mathbf{G}$  according to the following equation:

$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
  • Two of these generator matrices describe the  $\rm RSC \, (7, \, 3, \, 5)_8$. In the subtask (1) is explicitly asked which.
  • Another generator matrix belongs to  $\rm RSC \, (7, \, 5, \, 3)_8$, which is considered in subtask (3).




Hints:



Questions

1

Which of the generator polynomials describe the  $\rm RSC \, (7, \, 3, \, 5)_8$?

the matrix  $\mathbf{G}_{\rm A}$,
the matrix  $\mathbf{G}_{\rm B}$,
the matrix  $\mathbf{G}_{\rm C}$,
the matrix  $\mathbf{G}_{\rm D}$.

2

The information sequence starts with  $\alpha^4, \, 1, \, \alpha^3, \, 0, \, \alpha^6$. Determine the first codeword for the  $\rm RSC \, (7, \, 3, \, 5)_8$.

It holds  $c_0 = \alpha^2$,
It holds  $c_1 = \alpha^3$,
It holds  $c_6 = 0$.

3

What is the codeword for the  $\rm RSC \, (7, \, 5, \, 3)_8$ given the same sequence of information?

It holds  $c_0 = 1$,
It holds  $c_1 = 0$,
It holds  $c_6 = \alpha^6$.


Solution

(1)  Correct are the solutions 2 and 3  ⇒  matrices $\mathbf{G}_{\rm B}$ and $\mathbf{G}_{\rm C}$.

  • In the matrix $\mathbf{G}_{\rm C}$ the allowed transformations  $\alpha^8 = \alpha, \ \alpha^{10} = \alpha^3$  and  $\alpha^{12} = \alpha^5$  have already been considered.
  • The matrix $\mathbf{G}_{\rm A}$ holds for the $(7, \, 5, \, 3)$–Hamming code and $\mathbf{G}_{\rm D}$ belongs to the $\rm RSC \, (7, \, 5, \, 3)_8$. See subtask (3) for more details.


(2)  In the $\rm RSC \, (7, \, 3, \, 5)_8$ information symbols are processed in each coding step $k = 3$, in coding step 1 according to the specification the symbols $\alpha^4, \ 1$ and $\alpha^3$.

$\rm GF(2^3)$ as powers, polynomials and vectors
  • With the generator matrix $\mathbf{G}_{\rm C}$ thus holds:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5} \end{pmatrix}\hspace{0.05cm}. $$
  • This results according to the adjacent auxiliary table:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 = (110) + (001) + (011)= (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2}= (110) + (010) + (110) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{2} + \alpha^{3}\cdot \alpha^{4}= (110) + (100) + (001) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{3} + \alpha^{3}\cdot \alpha^{6}=$ (110) + (011) + (100) = (001) = 1 \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{4} + \alpha^{3}\cdot \alpha^{1} = \alpha^{4} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{5} + \alpha^{3}\cdot \alpha^{3}= (110) + (111) + (101) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot \alpha^{6} + \alpha^{3}\cdot \alpha^{5}= (\alpha^{2} + \alpha) + (\alpha^2 +1) + \alpha = 1 \hspace{0.05cm}.$$
  • You get exactly the same result as in subtask (4) of "Exercise 2.7". Correct are solutions 1 and 2.
  • So it is not $c_6 = 0$, but $c_6 = 1$.


(3)  At $\rm RSC \, (7, \, 5, \, 3)_8$, the information word $\underline{u} = (u_0, \, u_1, \, u_2, \, u_3, \, u_4)$ must be considered.

  • With the generator matrix $\mathbf{G}_{\rm D}$ one obtains:
$$\underline {c} = \underline {u} \cdot { \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} \alpha^4 & 1 & \alpha^3 & 0 & \alpha^6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^5 & \alpha^{1} & \alpha^{4}\\ 1 & \alpha^4 & \alpha^1 & \alpha^5 & \alpha^2 & \alpha^{6} & \alpha^{3} \end{pmatrix}\hspace{0.05cm}. $$
  • From this it follows:
$$c_0 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \alpha^{4}\cdot 1 + 1 \cdot 1 + \alpha^{3}\cdot 1 + 0 \cdot 1 + \alpha^{6}\cdot 1= (110) + (001) + (011) + (000) + (101) = (001) = 1 \hspace{0.05cm},$$
$$c_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4}\cdot 1 + 1 \cdot \alpha + \alpha^{3}\cdot \alpha^{2} \right ] + 0 \cdot \alpha^{3} + \alpha^{6}\cdot \alpha^{4}= \left [ \alpha^{3} \right ] + \alpha^{3} = 0 \hspace{0.05cm}.$$
  • This takes into account that the bracket expression $[ \ \text{...} \ ]$ corresponds exactly to the result $c_1$ of subtask (2).
  • Corresponding is also considered in the following calculations:
$$c_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{3} \right ] + \alpha^{6}\cdot \alpha^{1}= \left [ \alpha^{3} \right ] + \alpha^{7} = (011) + (001) = (010) = \alpha^{1} \hspace{0.05cm},$$
$$c_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{5}= \left [ 1 \right ] + \alpha^{4}= (001) + (110) = (111) = \alpha^{5} \hspace{0.05cm},$$
$$c_4 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{4} \right ] + \alpha^{6}\cdot \alpha^{2}= \left [ \alpha^{4} \right ] + \alpha^{1} = (110) + (010) = (100) = \alpha^{2} \hspace{0.05cm},$$
$$c_5 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ \alpha^{2} \right ] + \alpha^{6}\cdot \alpha^{6}= \left [ \alpha^{2} \right ] + \alpha^{5} = (100) + (111) = (011) = \alpha^{3} \hspace{0.05cm},$$
$$c_6 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left [ 1 \right ] + \alpha^{6}\cdot \alpha^{3}= \left [ 1 \right ] + \alpha^{2} = (001) + (100) = (101) = \alpha^{6} \hspace{0.05cm}.$$
  • This means: All proposed solutions are correct.