Difference between revisions of "Aufgaben:Exercise 1.3: Frame Structure of ISDN"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN-Basisanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Basic_Access
 
}}
 
}}
  
[[File:P_ID1581__Bei_A_1_3_neu.png|right|frame|Rahmenstruktur der  $\rm S_{0}$–Schnittstelle]]
+
[[File:P_ID1581__Bei_A_1_3_neu.png|right|frame|Frame structure of the  $\rm S_{0}$ interface]]
Die Grafik zeigt die Rahmenstruktur der  $\rm S_{0}$–Schnittstelle. Jeder Rahmen der Dauer  $T_{\rm R}$  beinhaltet $48$ Bit, darunter:
+
The graphic shows the frame structure of the  $\rm S_{0}$ interface. Each frame of the duration  $T_{\rm R}$  contains $48$ bits, among them:
*$16$ Bit für den ''Bearer Channel''    $\rm B1$ (hellblau),
+
*$16$ bits for the ''Bearer Channel''    $\rm B1$ (light blue),
*$16$ Bit für den ''Bearer Channel''   $\rm B2$ (dunkelblau),
+
*$16$ bits for the ''Bearer Channel''   $\rm B2$ (dark blue),
*$4$ Bit für den ''Data Channel''   $\rm D$ (grün).
+
*$4$ bits for the ''Data Channel''   $\rm D$ (green).
  
  
Gelb eingezeichnet sind die erforderlichen Steuerbits.
+
The required control bits are shown in yellow.
  
Vorgegeben wird für diese Aufgabe, dass jeder der beiden Basiskanäle  $\rm B1$  und  $\rm B2$  eine Nettodatenrate von  $R_{\rm B} = 64 \ \rm kbit/s$  bereitstellen soll.
+
For this exercise, it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 
  
Anzumerken ist noch, dass die Bitdauer  $T_{\rm B}$  des uncodierten Binärsignals gleichzeitig die Symboldauer des (modifizierten) AMI–Codes angibt, der jede binäre  $1$  dem Spannungspegel  $0 \ \rm V$  zuordnet und jede binäre  $0$  alternierend mit  $+0.75 \ \rm V$  bzw.  $–0.75 \ \rm V$  darstellt.
+
It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the (modified) AMI code, which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  and  $–0.75 \ \rm V$.   
  
Die Zahlenwerte in der Grafik (rot markiert) geben eine Beispielfolge an, die in der Teilaufgabe  '''(5)'''  entsprechend dem modifizierten AMI–Code in Spannungspegel umgesetzt werden soll.  
+
The numerical values in the graphic (marked in red) indicate an example sequence which is to be converted into voltage levels in subtask  '''(5)'''  according to the modified AMI code.
*Bitnummer $48$ beinhaltet das so genannte  '''L–Bit'''.  
+
*Bit number $48$ contains the so-called  '''L bit'''.  
*Dieses ist in der Teilaufgabe  '''(6)'''  so zu setzen, dass das Signal  $s(t)$  gleichsignalfrei wird.
+
*This is to be set in subtask  '''(6)'''  in such a way that the signal  $s(t)$  becomes free of equal signals.
  
  
Line 26: Line 26:
  
  
 +
''Notes:''
  
''Hinweise:''
+
*This exercise is part of the chapter  [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
 +
*The AMI code is described in detail in the chapter  [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes#Properties_of_the_AMI_code|"Properties of the AMI code"]]  of the book "Digital Signal Transmission".
 +
*It should also be noted that the first $47$ bits contain exactly $22$ "zeros".
  
*Die Aufgabe gehört zum Kapitel  [[Examples_of_Communication_Systems/ISDN-Basisanschluss|ISDN-Basisanschluss]].
 
*Der AMI–Code wird ausführlich im Kapitel  [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes#Eigenschaften_des_AMI-Codes|Eigenschaften des AMI-Codes]]  des Buches „Digitalsignalübertragung” beschrieben.
 
*Anzumerken ist ferner, dass die ersten $47$ Bit genau $22$ „Nullen” enthalten.
 
  
  
  
  
 
+
===Questions===
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Rahmendauer&nbsp; $T_{\rm R}$?
+
{What is the frame duration&nbsp; $T_{\rm R}$?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 250 3% } $\ \rm &micro; s$
  
{Wie groß ist die Bitdauer&nbsp; $T_{\rm B}$? ''Hinweis:'' &nbsp;Diese ist gleich der Symboldauer nach der AMI–Codierung.
+
{What is the bit duration&nbsp; $T_{\rm B}$? ''Note:'' &nbsp; This is equal to the symbol duration after AMI coding.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
 
$T_{\rm B} \ = \ $ { 5.208 3% } $\ \rm &micro; s $
  
{Wie groß ist die Gesamt–Bruttodatenrate&nbsp; $R_{\rm ges}$?
+
{What is the total gross data rate&nbsp; $R_{\rm ges}$?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm ges} \ = \ $ { 192 3% } $\ \rm kbit/s$
 
$R_{\rm ges} \ = \ $ { 192 3% } $\ \rm kbit/s$
  
{Wieviele Steuerbits&nbsp; $(N_{\rm St})$&nbsp; werden pro Rahmen übertragen?
+
{How many control bits&nbsp; $(N_{\rm St})$&nbsp; are transmitted per frame?
 
|type="{}"}
 
|type="{}"}
 
$N_{\rm St} \ = \ $ { 12 3% }  
 
$N_{\rm St} \ = \ $ { 12 3% }  
  
{Mit welchen Spannungswerten&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; werden Bit 10, 11 und 12 (grau hinterlegter Block) dargestellt?
+
{With which voltage values&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; are bits 10, 11 and 12 (gray shaded block) represented?
 
|type="{}"}
 
|type="{}"}
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
 
$U_{10} \ = \ $ { -0.8025--0.6975 } $\ \rm V $
Line 63: Line 62:
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
 
$U_{12} \ = \ $ { 0.75 3% } $\ \rm V $
  
{Welchen Spannungswert&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; besitzt das '''L–Bit''' am Ende?
+
{What is the voltage value&nbsp; $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$&nbsp; of the '''L bit''' at the end?
 
|type="{}"}
 
|type="{}"}
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
 
$U_{48} \ = \ $ { 0. } $\ \rm V $
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
 
'''(1)'''&nbsp;  
 
'''(1)'''&nbsp;  
*In jedem Rahmen werden jeweils 16 Bit der Basiskanäle B1 und B2 übertragen.  
+
*In each frame, 16 bits of the base channels B1 and B2 are transmitted.
*Mit der Rahmendauer $T_{\rm R}$ gilt somit für die Bitrate $(R_{\rm B} = 64 \ \rm kbit/s)$ eines jeden Rahmens:
+
*With the frame duration $T_{\rm R}$, the bit rate $(R_{\rm B} = 64 \ \rm kbit/s)$ of each frame is thus:
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
 
:$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm &micro; s}} \hspace{0.05cm}.$$
  
  
 
'''(2)'''&nbsp;  
 
'''(2)'''&nbsp;  
*Für jedes einzelne der 48 Bit steht somit folgende Zeitdauer zur Verfügung.  
+
*Thus, the following time duration is available for each of the 48 bits.
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
 
:$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm &micro; s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm &micro; s}}$$
*Da bei der (modifizierten) AMI–Codierung jedes Binärsymbol durch ein Ternärsymbol gleicher Dauer ersetzt wird, ist die Symboldauer nach der AMI–Codierung ebenfalls gleich $T_{\rm B}$.
+
*Since in (modified) AMI encoding each binary symbol is replaced by a ternary symbol of the same duration, the symbol duration after AMI encoding is also equal to $T_{\rm B}$.
  
  
  
'''(3)'''&nbsp; Die Bruttodatenrate ist gleich dem Kehrwert der Bitdauer:
+
'''(3)'''&nbsp; The gross data rate is equal to the reciprocal of the bit duration:
 
:$$R_{\rm ges} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
 
:$$R_{\rm ges} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Die Anzahl der Steuerbit beträgt:
+
'''(4)'''&nbsp; The number of control bits is:
 
:$$N_{\rm St} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
 
:$$N_{\rm St} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
*Diese sind in der Grafik gelb markiert.  
+
*These are marked in yellow in the graph.
*Die in der letzten Teilfrage berechnete Gesamt–Bruttodatenrate setzt sich somit wie folgt zusammen:
+
*Thus, the total gross data rate calculated in the last subquestion is composed as follows:
 
:$$R_{\rm ges} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm St}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
 
:$$R_{\rm ges} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm St}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Zu beachten ist, dass die erste „0” mit positiver Polarität codiert wird und alle folgenden alternierend mit $±0.75 \ {\rm V}$:  
+
'''(5)'''&nbsp; Note that the first "0" is coded with positive polarity and all following alternating with $±0.75 \ {\rm V}$:  
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 
*$U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
 
*$ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...}  = -0.75 \ {\rm V}$.
  
  
Daraus folgt weiter:  
+
It follows further:
*Das Bit $b_{10} = 0$ wird dargestellt durch $U_{10} \underline{= -0.75 \ \rm V}$,  
+
*Bit $b_{10} = 0$ is represented by $U_{10} \underline{= -0.75 \ \rm V}$,  
*Das Bit $b_{11} = 1$ durch $U_{11} \underline{= 0 \ \rm V}$ und
+
*Bit $b_{11} = 1$ by $U_{11} \underline{= 0 \ \rm V}$ and
*Das Bit $b_{12} = 0$ durch $U_{12} \underline{= +0.75 \ \rm V}$.  
+
*Bit $b_{12} = 0$ by $U_{12} \underline{= +0.75 \ \rm V}$.  
  
  
 
'''(6)'''&nbsp;  
 
'''(6)'''&nbsp;  
*Das '''L'''–Bit hat die Aufgabe, das AMI–codierte Signal (über alle 48 Ternärsymbole) gleichsignalfrei zu halten.  
+
*The '''L''' bit has the task of keeping the AMI encoded signal (over all 48 ternary symbols) equal signal free.
*Da 22 mal das Binärsymbol „0” aufgetreten ist (also je 11 mal die Spannungswerte $+0.75 \ \rm V$ und $-0.75 \ \rm V$) und dementsprechend 27 mal das Binärsymbol „1” (Spannungswert $0 \ \rm V$), ist $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$ zu setzen.
+
*Since the binary symbol "0" has occurred 22 times (i.e. 11 times each the voltage values $+0.75 \ \rm V$ and $-0.75 \ \rm V$) and correspondingly 27 times the binary symbol "1" (voltage value $0 \ \rm V$), $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$ must be set.
  
  

Revision as of 13:53, 9 October 2022

Frame structure of the  $\rm S_{0}$ interface

The graphic shows the frame structure of the  $\rm S_{0}$ interface. Each frame of the duration  $T_{\rm R}$  contains $48$ bits, among them:

  • $16$ bits for the Bearer Channel   $\rm B1$ (light blue),
  • $16$ bits for the Bearer Channel   $\rm B2$ (dark blue),
  • $4$ bits for the Data Channel   $\rm D$ (green).


The required control bits are shown in yellow.

For this exercise, it is specified that each of the two base channels  $\rm B1$  and  $\rm B2$  should provide a net data rate of  $R_{\rm B} = 64 \ \rm kbit/s$. 

It should also be noted that the bit duration  $T_{\rm B}$  of the uncoded binary signal simultaneously indicates the symbol duration of the (modified) AMI code, which assigns each binary  "$1$"  to the voltage level  $0 \ \rm V$  and alternately represents each binary  "$0$"  with  $+0.75 \ \rm V$  and  $–0.75 \ \rm V$. 

The numerical values in the graphic (marked in red) indicate an example sequence which is to be converted into voltage levels in subtask  (5)  according to the modified AMI code.

  • Bit number $48$ contains the so-called  L bit.
  • This is to be set in subtask  (6)  in such a way that the signal  $s(t)$  becomes free of equal signals.




Notes:

  • This exercise is part of the chapter  "ISDN Basic Access".
  • The AMI code is described in detail in the chapter  "Properties of the AMI code"  of the book "Digital Signal Transmission".
  • It should also be noted that the first $47$ bits contain exactly $22$ "zeros".



Questions

1

What is the frame duration  $T_{\rm R}$?

$T_{\rm R} \ = \ $

$\ \rm µ s$

2

What is the bit duration  $T_{\rm B}$? Note:   This is equal to the symbol duration after AMI coding.

$T_{\rm B} \ = \ $

$\ \rm µ s $

3

What is the total gross data rate  $R_{\rm ges}$?

$R_{\rm ges} \ = \ $

$\ \rm kbit/s$

4

How many control bits  $(N_{\rm St})$  are transmitted per frame?

$N_{\rm St} \ = \ $

5

With which voltage values  $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  are bits 10, 11 and 12 (gray shaded block) represented?

$U_{10} \ = \ $

$\ \rm V $
$U_{11} \ = \ $

$\ \rm V $
$U_{12} \ = \ $

$\ \rm V $

6

What is the voltage value  $(0 \ {\rm V}, \ +0.75 \ {\rm V}, \ –0.75 \ {\rm V})$  of the L bit at the end?

$U_{48} \ = \ $

$\ \rm V $


Solution

(1) 

  • In each frame, 16 bits of the base channels B1 and B2 are transmitted.
  • With the frame duration $T_{\rm R}$, the bit rate $(R_{\rm B} = 64 \ \rm kbit/s)$ of each frame is thus:
$$R_{\rm B} = \frac{16\,\,{\rm bit}}{T_{\rm R}} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T_{\rm R} = \frac{16\,\,{\rm bit}}{64 \cdot 10^3\,\,{\rm bit/s}} \hspace{0.15cm}\underline{= 250 \,{\rm µ s}} \hspace{0.05cm}.$$


(2) 

  • Thus, the following time duration is available for each of the 48 bits.
$$T_{\rm B} = \frac{T_{\rm R}}{48} = \frac{250 \,{\rm µ s}}{48} \hspace{0.15cm}\underline{ = 5.208 \,{\rm µ s}}$$
  • Since in (modified) AMI encoding each binary symbol is replaced by a ternary symbol of the same duration, the symbol duration after AMI encoding is also equal to $T_{\rm B}$.


(3)  The gross data rate is equal to the reciprocal of the bit duration:

$$R_{\rm ges} = \frac{1}{T_{\rm B}} \hspace{0.15cm}\underline{= 192 \,{\rm kbit/s}} \hspace{0.05cm}.$$


(4)  The number of control bits is:

$$N_{\rm St} = 48 - 2 \cdot 16 -4 \hspace{0.15cm}\underline{= 12} \hspace{0.05cm}.$$
  • These are marked in yellow in the graph.
  • Thus, the total gross data rate calculated in the last subquestion is composed as follows:
$$R_{\rm ges} = 2 \cdot {R_{\rm B}} + {R_{\rm D}} + {R_{\rm St}} = 2 \cdot 64 \,{\rm kbit/s} + 16 \,{\rm kbit/s} + 48 \,{\rm kbit/s} = 192 \,{\rm kbit/s} \hspace{0.05cm}.$$


(5)  Note that the first "0" is coded with positive polarity and all following alternating with $±0.75 \ {\rm V}$:

  • $U_{1} = U_{5} = U_{9} = U_{12} =\text{ ...} = +0.75 \ {\rm V},$
  • $ U_{2} = U_{7} = U_{10} = U_{13} = \text{ ...} = -0.75 \ {\rm V}$.


It follows further:

  • Bit $b_{10} = 0$ is represented by $U_{10} \underline{= -0.75 \ \rm V}$,
  • Bit $b_{11} = 1$ by $U_{11} \underline{= 0 \ \rm V}$ and
  • Bit $b_{12} = 0$ by $U_{12} \underline{= +0.75 \ \rm V}$.


(6) 

  • The L bit has the task of keeping the AMI encoded signal (over all 48 ternary symbols) equal signal free.
  • Since the binary symbol "0" has occurred 22 times (i.e. 11 times each the voltage values $+0.75 \ \rm V$ and $-0.75 \ \rm V$) and correspondingly 27 times the binary symbol "1" (voltage value $0 \ \rm V$), $U_{48}\hspace{0.15cm}\underline{=0 \ \rm V}$ must be set.