Difference between revisions of "Aufgaben:Exercise 2.09: Reed–Solomon Parameters"
Line 38: | Line 38: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
{It holds c_i ∈ {\rm GF}(2^m)c_i ∈ {\rm GF}(2^m). Which Reed-Solomon code parameters n result? | {It holds c_i ∈ {\rm GF}(2^m). Which Reed-Solomon code parameters n result? | ||
Line 73: | Line 73: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' For the code length of Reed–Solomon codes, the following applies in general | + | '''(1)''' For the code length of Reed–Solomon codes, the following applies in general: |
:$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm}, | :$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm}, | ||
\hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm} | \hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm} | ||
Line 79: | Line 79: | ||
− | '''(2)''' To be able to correct t symbol errors, the minimum distance must be dmin=2t+1. | + | '''(2)''' To be able to correct t symbol errors, the minimum distance must be dmin=2t+1. |
− | *The Reed–Solomon code is a so-called | + | *The Reed–Solomon code is a so-called "Maximum Distance Separable $\rm (MDS)$ code". |
+ | |||
*For this applies: | *For this applies: | ||
:dmin=n−k+1=2t+1⇒k=n−2t=2m−(2t+1). | :dmin=n−k+1=2t+1⇒k=n−2t=2m−(2t+1). | ||
*This gives for the | *This gives for the | ||
− | + | ** $\rm RSC \ 1$ $($with m=4, t=4):k=24−(2⋅4+1) =7_, | |
− | + | ** $\rm RSC \ 2$ $($with m=5, t=8):k=25−(2⋅8+1) =15_. | |
− | '''(3)''' The denotation of a Reed–Solomon code is RSC(n,k,dmin)q with q=2m=n+1. | + | '''(3)''' The denotation of a Reed–Solomon code is RSC(n,k,dmin)q with q=2m=n+1. |
− | Correct are the <u>solutions 1 and 4</u>: | + | *Correct are the <u>solutions 1 and 4</u>: |
− | * RSC 1⇒RSC(15,7,9)16, | + | ** RSC 1⇒RSC(15,7,9)16, |
− | * RSC 2⇒RSC(31,15,17)32. | + | ** RSC 2⇒RSC(31,15,17)32. |
− | '''(4)''' If dmin denotes the minimum distance of a block code, it can be used to detect e=dmin−1 symbol errors and correct t=e/2 symbol errors: | + | '''(4)''' If dmin denotes the minimum distance of a block code, it can be used to detect e=dmin−1 symbol errors and to correct t=e/2 symbol errors: |
* RSC 1:dmin= 9, t=4, e=8_, | * RSC 1:dmin= 9, t=4, e=8_, | ||
* RSC 2:dmin=17, t=8, e=16_. | * RSC 2:dmin=17, t=8, e=16_. | ||
Line 104: | Line 105: | ||
− | '''(5)''' Correct are the two middle <u>solutions 2 and 3</u>: | + | '''(5)''' Correct are the two middle <u>solutions 2 and 3</u>: |
− | *For RSC 1(m=4) | + | *For RSC 1(m=4): n=15 code symbols from GF(25) correspond to 60 bits and k=7 information symbols are exactly 28 bits: |
− | + | ** RSC 1⇒RSC(15,7,9)16⇒RSC(60,28,9)2, | |
− | + | ** RSC 2⇒RSC(31,15,17)32⇒RSC(155,75,17)2. | |
− | *For the minimum distance on bit level ⇒ GF(2), dmin=9 resp. dmin=17 result in the same values as on symbol level | + | *For the minimum distance on bit level ⇒ GF(2), dmin=9 resp. dmin=17 result in the same values as on symbol level (see [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"theory section"]]$)$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Latest revision as of 17:40, 10 October 2022
Adjacent is an incomplete list of possible Reed–Solomon codes known to be based on a Galois field GF(q)=GF(2m).
The parameter m specifies with how many bits a Reed–Solomon code symbol is represented. It is valid:
- m=4 (red font),
- m=5 (blue font),
- m=6 (green font).
A Reed–Solomon code is generally denoted as follows: RSC (n, k, dmin)q.
The parameters have the following meaning:
- The parameter n specifies the number of symbols of a code word c_ ⇒ length of the code.
- Tthe parameter k specifies the number of symbols of an information block u_ ⇒ dimension of the code.
- The parameter dmin denotes the minimum distance between two code words
(for all Reed–Solomon codes equal n−k+1). - The parameter q gives an indication of the use of the Galois field GF(q).
To the right, there is the binary representation of the same code:
- In this realization of a Reed–Solomon code, each information and code symbol is represented by m bits.
- For example, it can be seen from the first row that the minimum distance in terms of bits is also dmin=5 if in GF(2m) the minimum distance is dmin=5.
- This code can correct up to t=2 bit errors (or symbol errors) and detect up to e=4 bit errors (or symbol errors).
Hints:
- This exercise belongs to the chapter "Definition and Properties of Reed-Solomon Codes".
- However, reference is also made to the chapter "Extension Field".
Questions
Solution
- n=q−1=2m−1⇒m=4:n=15_,m=5:n=31_,m=6:n=63_.
(2) To be able to correct t symbol errors, the minimum distance must be dmin=2t+1.
- The Reed–Solomon code is a so-called "Maximum Distance Separable (MDS) code".
- For this applies:
- dmin=n−k+1=2t+1⇒k=n−2t=2m−(2t+1).
- This gives for the
- RSC 1 (with m=4, t=4):k=24−(2⋅4+1) =7_,
- RSC 2 (with m=5, t=8):k=25−(2⋅8+1) =15_.
(3) The denotation of a Reed–Solomon code is RSC(n,k,dmin)q with q=2m=n+1.
- Correct are the solutions 1 and 4:
- RSC 1⇒RSC(15,7,9)16,
- RSC 2⇒RSC(31,15,17)32.
(4) If dmin denotes the minimum distance of a block code, it can be used to detect e=dmin−1 symbol errors and to correct t=e/2 symbol errors:
- RSC 1:dmin= 9, t=4, e=8_,
- RSC 2:dmin=17, t=8, e=16_.
(5) Correct are the two middle solutions 2 and 3:
- For RSC 1(m=4): n=15 code symbols from GF(25) correspond to 60 bits and k=7 information symbols are exactly 28 bits:
- RSC 1⇒RSC(15,7,9)16⇒RSC(60,28,9)2,
- RSC 2⇒RSC(31,15,17)32⇒RSC(155,75,17)2.
- For the minimum distance on bit level ⇒ GF(2), dmin=9 resp. dmin=17 result in the same values as on symbol level (see "theory section").