Difference between revisions of "Aufgaben:Exercise 2.09: Reed–Solomon Parameters"

From LNTwww
 
Line 38: Line 38:
  
  
===Solution===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
 
{It holds&nbsp; c_i &#8712; {\rm GF}(2^m)c_i &#8712; {\rm GF}(2^m).&nbsp; Which Reed-Solomon code parameters&nbsp; n&nbsp; result?
 
{It holds&nbsp; c_i &#8712; {\rm GF}(2^m).&nbsp; Which Reed-Solomon code parameters&nbsp; n&nbsp; result?
Line 73: Line 73:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; For the code length of Reed&ndash;Solomon codes, the following applies in general.
+
'''(1)'''&nbsp; For the code length of Reed&ndash;Solomon codes,&nbsp; the following applies in general:
 
:$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm},  
 
:$$n = q -1 = 2^m -1 \hspace{0.3cm}\Rightarrow  \hspace{0.3cm} m = 4 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 15} \hspace{0.05cm},  
 
\hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm}  
 
\hspace{0.4cm}m = 5 {\rm :}\hspace{0.2cm} n \hspace{0.15cm}\underline {= 31} \hspace{0.05cm},\hspace{0.4cm}  
Line 79: Line 79:
  
  
'''(2)'''&nbsp; To be able to correct t symbol errors, the minimum distance must be dmin=2t+1.  
+
'''(2)'''&nbsp; To be able to correct&nbsp; t&nbsp; symbol errors,&nbsp; the minimum distance must be&nbsp; dmin=2t+1.  
*The Reed&ndash;Solomon code is a so-called MDS code (<i>Maximum Distance Separable</i>).  
+
*The Reed&ndash;Solomon code is a so-called&nbsp; "Maximum Distance Separable&nbsp; $\rm (MDS)$&nbsp; code".
 +
 
*For this applies:
 
*For this applies:
 
:dmin=nk+1=2t+1k=n2t=2m(2t+1).
 
:dmin=nk+1=2t+1k=n2t=2m(2t+1).
  
 
*This gives for the
 
*This gives for the
:* RSC 1 (mit m=4, t=4):k=24(24+1) =7_,
+
** $\rm RSC \ 1$&nbsp; $($with&nbsp; m=4, t=4):k=24(24+1) =7_,
:* RSC 2 (mit m=5, t=8):k=25(28+1) =15_.
+
** $\rm RSC \ 2$&nbsp; $($with&nbsp; m=5, t=8):k=25(28+1) =15_.
  
  
  
'''(3)'''&nbsp; The denotation of a Reed&ndash;Solomon code is RSC(n,k,dmin)q with q=2m=n+1.  
+
'''(3)'''&nbsp; The denotation of a Reed&ndash;Solomon code is&nbsp; RSC(n,k,dmin)q&nbsp; with&nbsp; q=2m=n+1.  
  
Correct are the <u>solutions 1 and 4</u>:
+
*Correct are the&nbsp; <u>solutions 1 and 4</u>:
* RSC 1RSC(15,7,9)16,
+
** RSC 1RSC(15,7,9)16,
* RSC 2RSC(31,15,17)32.
+
** RSC 2RSC(31,15,17)32.
  
  
  
'''(4)'''&nbsp; If dmin denotes the minimum distance of a block code, it can be used to detect e=dmin1 symbol errors and correct t=e/2 symbol errors:
+
'''(4)'''&nbsp; If&nbsp; dmin&nbsp; denotes the minimum distance of a block code,&nbsp; it can be used to detect&nbsp; e=dmin1&nbsp; symbol errors and to correct&nbsp; t=e/2&nbsp; symbol errors:
 
* RSC 1:dmin=  9, t=4, e=8_,
 
* RSC 1:dmin=  9, t=4, e=8_,
 
* RSC 2:dmin=17, t=8, e=16_.
 
* RSC 2:dmin=17, t=8, e=16_.
Line 104: Line 105:
  
  
'''(5)'''&nbsp; Correct are the two middle <u>solutions 2 and 3</u>:  
+
'''(5)'''&nbsp; Correct are the two middle&nbsp; <u>solutions 2 and 3</u>:  
*For RSC 1(m=4), n=15 code symbols from GF(25) equal 60 bits and k=7 information symbols equal exactly 28 bits:
+
*For&nbsp; RSC 1(m=4): &nbsp; n=15&nbsp; code symbols from&nbsp; GF(25)&nbsp; correspond to&nbsp; 60&nbsp; bits and&nbsp; k=7&nbsp; information symbols are exactly&nbsp; 28&nbsp; bits:
:* RSC 1RSC(15,7,9)16RSC(60,28,9)2,
+
** RSC 1RSC(15,7,9)16RSC(60,28,9)2,
:* RSC 2RSC(31,15,17)32RSC(155,75,17)2.
+
** RSC 2RSC(31,15,17)32RSC(155,75,17)2.
*For the minimum distance on bit level &nbsp; &rArr; &nbsp; GF(2), dmin=9 resp. dmin=17 result in the same values as on symbol level &nbsp; <br>&rArr; &nbsp; $\rm GF(2^4)$ resp. $\rm GF(2^5)$ (see [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"theory section"]]).
+
*For the minimum distance on bit level &nbsp; &rArr; &nbsp; GF(2),&nbsp; dmin=9&nbsp; resp.&nbsp; dmin=17&nbsp; result in the same values as on symbol level &nbsp; (see [[Channel_Coding/Definition_and_Properties_of_Reed-Solomon_Codes#Code_name_and_code_rate|"theory section"]]$)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:40, 10 October 2022

Some Reed-Solomon codes

Adjacent is an incomplete list of possible Reed–Solomon codes known to be based on a Galois field  GF(q)=GF(2m)

The parameter  m  specifies with how many bits a Reed–Solomon code symbol is represented.  It is valid:

  • m=4  (red font),
  • m=5  (blue font),
  • m=6  (green font).


A Reed–Solomon code is generally denoted as follows:   RSC (n, k, dmin)q.

The parameters have the following meaning:

  1. The parameter  n  specifies the number of symbols of a code word  c_    ⇒   length of the code.
  2. Tthe parameter  k  specifies the number of symbols of an information block  u_    ⇒   dimension  of the code.
  3. The parameter  dmin  denotes the  minimum distance   between two code words
    (for all Reed–Solomon codes equal  nk+1).
  4. The parameter  q  gives an indication of the use of the Galois field  GF(q).


To the right,  there is the binary representation of the same code:

  1. In this realization of a Reed–Solomon code,  each information and code symbol is represented by  m  bits.
  2. For example,  it can be seen from the first row that the minimum distance in terms of bits is also  dmin=5  if in  GF(2m)  the minimum distance is  dmin=5.
  3. This code can correct up to   t=2   bit errors  (or symbol errors)  and detect up to   e=4   bit errors  (or symbol errors).



Hints:



Questions

1

It holds  ciGF(2m).  Which Reed-Solomon code parameters  n  result?

m=4:n = 

m=5:n = 

m=6:n = 

2

Two specific Reed-Solomon codes   RSC 1 (m=4, t=4)   and   RSC 2 (m=5, t=8)   are considered below.
Which parameter  k  can be used to correct exactly  t  symbol errors?

RSC 1:k = 

RSC 2:k = 

3

Which designations are correct for   RSC 1   resp.   RSC 2?

RSC 1  is also called  RSC(15,7,9)16.
RSC 1  is also called  RSC(15,7,4)4.
RSC 2  is also called  RSC(31,17,15)32.
RSC 2  is also called  RSC(31,15,17)32.

4

How many symbol errors  (e)  can be detected at most?

RSC 1:e = 

RSC 2:e = 

5

What are the codes under consideration in binary notation?

RSC 1  corresponds to the code  RSC(60,28,36)2.
RSC 1  corresponds to the code  RSC(60,28,9)2.
RSC 2  corresponds to the code  RSC(155,75,17)2.
RSC 2  corresponds to the code  RSC(124,60,17)2.


Solution

(1)  For the code length of Reed–Solomon codes,  the following applies in general:

n=q1=2m1m=4:n=15_,m=5:n=31_,m=6:n=63_.


(2)  To be able to correct  t  symbol errors,  the minimum distance must be  dmin=2t+1.

  • The Reed–Solomon code is a so-called  "Maximum Distance Separable  (MDS)  code".
  • For this applies:
dmin=nk+1=2t+1k=n2t=2m(2t+1).
  • This gives for the
    • RSC 1  (with  m=4, t=4):k=24(24+1) =7_,
    • RSC 2  (with  m=5, t=8):k=25(28+1) =15_.


(3)  The denotation of a Reed–Solomon code is  RSC(n,k,dmin)q  with  q=2m=n+1.

  • Correct are the  solutions 1 and 4:
    • RSC 1RSC(15,7,9)16,
    • RSC 2RSC(31,15,17)32.


(4)  If  dmin  denotes the minimum distance of a block code,  it can be used to detect  e=dmin1  symbol errors and to correct  t=e/2  symbol errors:

  • RSC 1:dmin=  9, t=4, e=8_,
  • RSC 2:dmin=17, t=8, e=16_.


(5)  Correct are the two middle  solutions 2 and 3:

  • For  RSC 1(m=4):   n=15  code symbols from  GF(25)  correspond to  60  bits and  k=7  information symbols are exactly  28  bits:
    • RSC 1RSC(15,7,9)16RSC(60,28,9)2,
    • RSC 2RSC(31,15,17)32RSC(155,75,17)2.
  • For the minimum distance on bit level   ⇒   GF(2)dmin=9  resp.  dmin=17  result in the same values as on symbol level   (see "theory section").