Difference between revisions of "Aufgaben:Exercise 1.5: HDB3 Coding"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN–Primärmultiplexanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection
  
 
}}
 
}}
  
[[File:P_ID1624__Bei_A_1_5.png|right|frame|Signale bei HDB3-Codierung]]
+
[[File:P_ID1624__Bei_A_1_5.png|right|frame|Signals with HDB3 coding]]
Der ISDN–Primärmultiplexanschluss basiert auf dem  $\rm PCM–System \ 30/32$  und bietet 30 vollduplexfähige Basiskanäle, dazu noch einen Signalisierungskanal sowie einen Synchronisationskanal.
+
The ISDN primary rate interface is based on the  $\rm PCM–System \ 30/32$  and offers 30 full-duplex basic channels, plus a signaling channel and a synchronization channel.
  
Jeder dieser Kanäle, die im Zeitmultiplex übertragen werden, hat eine Datenrate von  $64 \ \rm kbit/s$. Ein Rahmen besteht aus jeweils einem Byte (8 Bit) aller 32 Kanäle. Die Dauer eines solchen Rahmens wird mit  $T_{\rm R}$  bezeichnet, während  $T_{\rm B}$  die Bitdauer angibt.
+
Each of these channels, which are transmitted in time division multiplex, has a data rate of  $64 \ \rm kbit/s$. A frame consists of one byte (8 bits) of all 32 channels. The duration of such a frame is denoted by  $T_{\rm R}$,  while  $T_{\rm B}$  indicates the bit duration.
 
<br clear=all>  
 
<br clear=all>  
Sowohl auf der&nbsp; $\rm S_{\rm 2M}$– als auch auf der&nbsp; $\rm U_{\rm K2}$–Schnittstelle des  betrachteten ISDN–Systems wird der&nbsp; '''HDB3–Code'''&nbsp; verwendet, der vom AMI–Code abgeleitet ist. Es handelt sich hierbei um einen Pseudoternärcode&nbsp; $($Symbolumfang&nbsp; $M = 3$, Symboldauer&nbsp; $T = T_{\rm B})$, der sich vom AMI–Code in der Weise unterscheidet, dass lange Nullfolgen durch bewusste Verletzung der AMI–Codierregel vermieden werden. Dabei gilt:
+
On both the&nbsp; $\rm S_{\rm 2M}$ and&nbsp; $\rm U_{\rm K2}$ interfaces of the ISDN system under consideration, the&nbsp; '''HDB3 code'''&nbsp; is used, which is derived from the AMI code. This is a pseudo-ternary code&nbsp; $($symbol range&nbsp; $M = 3$, symbol duration&nbsp; $T = T_{\rm B})$, that differs from the AMI code in that long zero sequences are avoided by deliberately violating the AMI coding rule. The following applies:
  
Treten im AMI–codierten Signal&nbsp; $a(t)$&nbsp; vier aufeinanderfolgende&nbsp; „'''0'''”–Symbole auf, so werden diese durch vier andere Ternärsymbole ersetzt:
+
If four consecutive&nbsp; "'''0'''" symbols occur in the AMI-encoded signal&nbsp; $a(t)$,&nbsp; these are replaced by four other ternary symbols:
*Sind vor diesem Viererblock im Signal&nbsp; $a(t)$&nbsp; eine gerade Anzahl von&nbsp; +'''1'''&nbsp; aufgetreten und der letzte Puls positiv, so wird&nbsp; '''0 0 0 0'''&nbsp; durch&nbsp; „– '''0 0''' –”&nbsp; ersetzt. Ist der letzte Puls negativ, so wird&nbsp; '''0 0 0 0'''&nbsp; durch&nbsp; + '''0 0''' +&nbsp; ersetzt.
+
*If an even number of&nbsp; "+'''1'''"&nbsp; occurred before this block of four in the signal&nbsp;  $a(t)$&nbsp; and the last pulse is positive,&nbsp; "'''0 0 0 0'''"&nbsp; is replaced by&nbsp; "– '''0 0''' –".&nbsp; If the last pulse is negative,&nbsp; "'''0 0 0 0'''"&nbsp; is replaced by&nbsp; "+ '''0 0''' +".&nbsp;
*Bei ungerader Anzahl von Einsen vor diesem&nbsp; '''0 0 0 0'''”–Block werden dagegen als Ersetzungen&nbsp; '''0 0 0''' +&nbsp; (falls letzter Puls positiv)&nbsp; oder&nbsp; '''0 0 0''' –”&nbsp; (falls letzter Puls negativ)&nbsp; gewählt.
+
*On the other hand, if there is an odd number of ones before this&nbsp; "'''0 0 0 0'''" block,&nbsp; "'''0 0 0''' +"&nbsp; (if last pulse positive) or&nbsp; oder&nbsp; "'''0 0 0''' –"&nbsp; (if last pulse negative) are selected.
  
  
Die Grafik zeigt oben das Binärsignal&nbsp; $q(t)$&nbsp; und das Signal&nbsp; $a(t)$&nbsp; nach der AMI–Codierung. Das HDB3–Signal, das Sie im Laufe dieser Aufgabe ermitteln sollen, wird mit&nbsp; $c(t)$&nbsp; bezeichnet.
+
The graph above shows the binary signal&nbsp; $q(t)$&nbsp; and the signal&nbsp; $a(t)$&nbsp; after AMI coding. The HDB3 signal, which you are to determine in the course of this exercise, is denoted by&nbsp; $c(t)$.&nbsp;  
  
  
Line 24: Line 24:
  
  
''Hinweise:''  
+
''Notes:''  
  
*Die Aufgabe gehört zum Kapitel&nbsp; [[Examples_of_Communication_Systems/ISDN–Primärmultiplexanschluss|ISDN–Primärmultiplexanschluss]] .  
+
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection|"ISDN Primary Multiplex Connection"]] .  
*Informationen zu den Pseudoternärcodes finden Sie im&nbsp;  [[Digital_Signal_Transmission/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]]&nbsp; von „Digitalsignalübertragung”.
+
*Information about the pseudo-ternary codes can be found in the&nbsp;  [[Digital_Signal_Transmission/Symbolwise_Coding_with_Pseudo-Ternary_Codes|"Symbolwise Coding with Pseudo-Ternary Codes"]]&nbsp; of "Digital Signal Transmission".
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Gesamtdatenrate des ISDN–Primärmultiplexanschlusses?
+
{What is the total data rate of the ISDN rate interface?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
  
{Welche Bitdauer&nbsp; $T_{\rm B}$&nbsp; und Rahmendauer&nbsp; $T_{\rm R}$&nbsp; ergeben sich daraus?
+
{What is the bit duration&nbsp; $T_{\rm B}$&nbsp; and frame duration&nbsp; $T_{\rm R}$?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm &micro; s$
 
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''6'''&nbsp; und Bit&nbsp; '''10'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''6'''&nbsp; and bit&nbsp; '''10'''&nbsp; coded?
 
|type="{}"}
 
|type="{}"}
 
$c_{6} \ = \ $ { 0 3% }  
 
$c_{6} \ = \ $ { 0 3% }  
Line 53: Line 53:
 
$c_{10} \ = \ $ { 0 3% }  
 
$c_{10} \ = \ $ { 0 3% }  
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''14'''&nbsp; und Bit&nbsp; '''17'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''14'''&nbsp; and bit&nbsp; '''17'''&nbsp; coded?
 
|type="{}"}
 
|type="{}"}
 
$c_{14} \ = \ $ { 0 3% }  
 
$c_{14} \ = \ $ { 0 3% }  
Line 60: Line 60:
 
$c_{17} \ = \ $ { 1 3% }  
 
$c_{17} \ = \ $ { 1 3% }  
  
{Wie wird der Nullblock zwischen Bit&nbsp; '''20'''&nbsp; und Bit&nbsp; '''24'''&nbsp; codiert?
+
{How is the zero block between bit&nbsp; '''20'''&nbsp; and bit&nbsp; '''24'''&nbsp; coded?
 
|type="{}"}
 
|type="{}"}
 
$c_{20} \ = \ $ { -1.03--0.97 }  
 
$c_{20} \ = \ $ { -1.03--0.97 }  
Line 70: Line 70:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Die Gesamtdatenrate der insgesamt $32$ Kanäle zu je $64 \ \rm kbit/s$ ergibt
+
'''(1)'''&nbsp; The total data rate of the $32$ channels at $64 \ \rm kbit/s$ each results in
 
:$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$
 
:$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$
  
  
'''(2)'''&nbsp; Die Bitdauer ist $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm &micro; s}$.  
+
'''(2)'''&nbsp; The bit duration is $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm &micro; s}$.  
*Pro Rahmen wird jeweils ein Byte (8 Bit) eines jeden Kanals übertragen. Daraus folgt:
+
*One byte (8 bits) of each channel is transmitted per frame. It follows that:
 
:$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm &micro; s}}\hspace{0.05cm}.$$
 
:$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Bis zum Zeitpunkt $t = 6T$ ist im AMI–codierten Signal $a(t)$ genau einmal eine „+'''1'''” aufgetreten.  
+
'''(3)'''&nbsp; By time $t = 6T$, a "+'''1'''" has occurred exactly once in the AMI-encoded signal$a(t)$.  
[[File:P_ID1625__Bei_A_1_5e.png|right|frame|Zusammenhang zwischen AMI-Code und HDB3-Code]]
+
[[File:P_ID1625__Bei_A_1_5e.png|right|frame|Relationship between AMI code and HDB3 code]]
*Wegen $a_{5} = –1$ wird beim HDB3–Code „'''0 0 0 0'''” ersetzt durch  (siehe Grafik)
+
*Because of $a_{5} = –1$, in the HDB3 code "'''0 0 0 0'''" is replaced by (see diagram)
 
:$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
 
:$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
* Dagegen wird $\underline{c_{10} = a_{10} = 0}$ durch die HDB3–Codierung nicht verändert.
+
* In contrast, $\underline{c_{10} = a_{10} = 0}$ is not changed by HDB3 coding.
  
  
  
'''(4)'''&nbsp; Bis einschließlich $a_{13}$ gibt es dreimal  eine „+1” &nbsp; &rArr; &nbsp;  ungerade Anzahl. Wegen $a_{12} = +1$ wird dieser Nullblock wie folgt ersetzt:
+
'''(4)'''&nbsp; Up to and including $a_{13}$, there are three times a "+1" &nbsp; &rArr; &nbsp;  odd number. Because of $a_{12} = +1$, this zero block is replaced as follows:
 
:$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$
 
:$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Im AMI–codierten Signal tritt bis einschließlich $a_{19}$ genau viermal „+1” auf &nbsp; &rArr; &nbsp; geradzahlige Anzahl.  
+
'''(5)'''&nbsp; In the AMI encoded signal, "+1" occurs exactly four times up to and including $a_{19}$ &nbsp; &rArr; &nbsp; even number.
  
*Wegen $a_{19} = +1$ lautet die Ersetzung gemäß Regel 2 auf der Angabenseite:
+
*Because of $a_{19} = +1$, the substitution according to rule 2 in the information section is:
 
:$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
 
:$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
*Das Nullsymbol $a_{24}$ bleibt unverändert: $\underline{c_{24} = 0}$.
+
*The zero symbol $a_{24}$ remains unchanged: $\underline{c_{24} = 0}$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 14:31, 11 October 2022

Signals with HDB3 coding

The ISDN primary rate interface is based on the  $\rm PCM–System \ 30/32$  and offers 30 full-duplex basic channels, plus a signaling channel and a synchronization channel.

Each of these channels, which are transmitted in time division multiplex, has a data rate of  $64 \ \rm kbit/s$. A frame consists of one byte (8 bits) of all 32 channels. The duration of such a frame is denoted by  $T_{\rm R}$,  while  $T_{\rm B}$  indicates the bit duration.
On both the  $\rm S_{\rm 2M}$ and  $\rm U_{\rm K2}$ interfaces of the ISDN system under consideration, the  HDB3 code  is used, which is derived from the AMI code. This is a pseudo-ternary code  $($symbol range  $M = 3$, symbol duration  $T = T_{\rm B})$, that differs from the AMI code in that long zero sequences are avoided by deliberately violating the AMI coding rule. The following applies:

If four consecutive  "0" symbols occur in the AMI-encoded signal  $a(t)$,  these are replaced by four other ternary symbols:

  • If an even number of  "+1"  occurred before this block of four in the signal  $a(t)$  and the last pulse is positive,  "0 0 0 0"  is replaced by  "– 0 0 –".  If the last pulse is negative,  "0 0 0 0"  is replaced by  "+ 0 0 +". 
  • On the other hand, if there is an odd number of ones before this  "0 0 0 0" block,  "0 0 0 +"  (if last pulse positive) or  oder  "0 0 0 –"  (if last pulse negative) are selected.


The graph above shows the binary signal  $q(t)$  and the signal  $a(t)$  after AMI coding. The HDB3 signal, which you are to determine in the course of this exercise, is denoted by  $c(t)$. 




Notes:



Questions

1

What is the total data rate of the ISDN rate interface?

$R_{\rm B} \ = \ $

$\ \rm Mbit/s$

2

What is the bit duration  $T_{\rm B}$  and frame duration  $T_{\rm R}$? 

$T_{\rm B} \ = \ $

$\ \rm µ s$
$T_{\rm R} \ = \ $

$\ \rm µ s$

3

How is the zero block between bit  6  and bit  10  coded?

$c_{6} \ = \ $

$c_{7} \ = \ $

$c_{8} \ = \ $

$c_{9} \ = \ $

$c_{10} \ = \ $

4

How is the zero block between bit  14  and bit  17  coded?

$c_{14} \ = \ $

$c_{15} \ = \ $

$c_{16} \ = \ $

$c_{17} \ = \ $

5

How is the zero block between bit  20  and bit  24  coded?

$c_{20} \ = \ $

$c_{21} \ = \ $

$c_{22} \ = \ $

$c_{23} \ = \ $

$c_{24} \ = \ $


Solution

(1)  The total data rate of the $32$ channels at $64 \ \rm kbit/s$ each results in

$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$


(2)  The bit duration is $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm µ s}$.

  • One byte (8 bits) of each channel is transmitted per frame. It follows that:
$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm µ s}}\hspace{0.05cm}.$$


(3)  By time $t = 6T$, a "+1" has occurred exactly once in the AMI-encoded signal$a(t)$.

Relationship between AMI code and HDB3 code
  • Because of $a_{5} = –1$, in the HDB3 code "0 0 0 0" is replaced by (see diagram)
$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
  • In contrast, $\underline{c_{10} = a_{10} = 0}$ is not changed by HDB3 coding.


(4)  Up to and including $a_{13}$, there are three times a "+1"   ⇒   odd number. Because of $a_{12} = +1$, this zero block is replaced as follows:

$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$


(5)  In the AMI encoded signal, "+1" occurs exactly four times up to and including $a_{19}$   ⇒   even number.

  • Because of $a_{19} = +1$, the substitution according to rule 2 in the information section is:
$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
  • The zero symbol $a_{24}$ remains unchanged: $\underline{c_{24} = 0}$.