Difference between revisions of "Aufgaben:Exercise 3.12Z: Ring and Feedback"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2710__KC_Z_3_12.png|right|frame|Ring und Rückkopplung im Zustandsübergangsdiagramm]]
+
[[File:P_ID2710__KC_Z_3_12.png|right|frame|Ring and feedback in the state transition diagram]]
Um die Pfadgewichtsfunktion  $T(X)$  eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.
+
In order to determine the path weighting enumerator function  $T(X)$  of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.
  
Im Zuge dieser Diagrammreduktion können auftreten:
+
In the course of this diagram reduction can occur:
* serielle und parallele Übergänge,
+
* serial and parallel transitions,
* ein Ring entsprechend der obigen Skizze,
+
* a ring according to the sketch above,
* eine Rückkopplung entsprechend der unteren Skizze.
+
* a feedback according to the sketch below.
  
  
Für diese beiden Graphen sind die Entsprechungen  $E(X, \, U)$  und  $F(X, \, U)$  in Abhängigkeit der angegebenen Funktionen  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$  zu ermitteln.
+
For these two graphs, find the correspondences  $E(X, \, U)$  and  $F(X, \, U)$  depending on the given functions  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .
  
  
Line 19: Line 19:
  
  
''Hinweise:''
+
Hints:
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken| Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]].
+
* This exercise belongs to the chapter  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers| "Distance characteristics and error probability barriers"]].
* Mit dieser Aufgabe sollen einige der Angaben auf der Seite  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]]  bewiesen werden.
+
* This exercise is intended to prove some of the statements on the  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Rules for manipulating the state transition diagram"]]  page.
* Angewendet werden diese Regeln in der  [[Aufgaben:Aufgabe_3.12:_Pfadgewichtsfunktion|Aufgabe 3.12]]  und der  [[Aufgaben:Aufgabe_3.13:_Nochmals_zu_den_Pfadgewichtsfunktionen|Aufgabe 3.13]].
+
* Applied these rules in the  [[Aufgaben:Exercise_3.12:_Path_Weighting_Function|"Exercise 3.12"]]  and the  [[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|"Exercise 3.13"]].
  
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der aufgeführten Übergänge sind beim Ring möglich?
+
{Which of the listed transitions are possible with the ring?
 
|type="[]"}
 
|type="[]"}
 
+ $S_1 &#8594; S_2 &#8594; S_3$,
 
+ $S_1 &#8594; S_2 &#8594; S_3$,
Line 35: Line 35:
 
- $S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_3$.
 
- $S_1 &#8594; S_2 &#8594; S_1 &#8594; S_2 &#8594; S_3$.
  
{Wie lautet die Ersetzung&nbsp; $E(X, \, U)$&nbsp; eines Ringes?
+
{What is the substitution&nbsp; $E(X, \, U)$&nbsp; of a ring?
 
|type="()"}
 
|type="()"}
 
- $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
 
- $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
Line 41: Line 41:
 
- $E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.
 
- $E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.
  
{Welche der aufgeführten Übergänge sind bei Rückkopplung möglich?
+
{Which of the listed transitions are possible with feedback?
 
|type="[]"}
 
|type="[]"}
 
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_4$,
 
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_4$,
Line 48: Line 48:
 
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4$.
 
+ $S_1 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_2 &#8594; S_3 &#8594; S_4$.
  
{Wie lautet die Ersetzung&nbsp; $F(X, \, U)$&nbsp; einer Rückkopplung?
+
{What is the substitution&nbsp; $F(X, \, U)$&nbsp; of a feedback?
 
|type="()"}
 
|type="()"}
 
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
 
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
Line 54: Line 54:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:  
+
'''(1)'''&nbsp; Correct are <u>solutions 1 and 2</u>:  
*Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$&ndash;mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$ und geht abschließend von $S_2$ nach $S_3$ weiter.
+
*In general terms, one first goes from $S_1$ to $S_2$, remains $j$&ndash;times in the state $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$, and finally continues from $S_2$ to $S_3$.
  
  
  
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(2)'''&nbsp; Correct is the <u>solution suggestion 2</u>:
*Entsprechend den Ausführungen zur Teilaufgabe '''(1)''' erhält man für die Ersetzung des Ringes
+
*In accordance with the explanations for the subtask '''(1)''', one obtains for the substitution of the ring
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Der Klammerausdruck ergibt $1/(1 \, &ndash;C)$.  
+
*The parenthesis expression gives $1/(1 \, &ndash;C)$.  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
:$$E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1, 3 und 4</u>:  
+
'''(3)'''&nbsp; Correct are the <u>solutions 1, 3 and 4</u>:  
* Man geht zunächst von $S_1$ nach $S_2 \ \Rightarrow \ A(X, \, U)$,
+
* one goes first from $S_1$ to $S_2 \ \Rightarrow \ A(X, \, U)$,
* dann von $S_2$ nach $S_3 \ \Rightarrow \ C(X, \, U)$,
+
* then from $S_2$ to $S_3 \ \Rightarrow \ C(X, \, U)$,
* anschließend $j$&ndash;mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
+
* then $j$&ndash;times back to $S_2$ and again to $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
* abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,
+
* finally from $S_3$ to $S_4 \ \Rightarrow \ B(X, \, U)$,
  
  
  
'''(4)'''&nbsp; Richtig ist also der <u>Lösungsvorschlag 1</u>:
+
'''(4)'''&nbsp; Thus, the correct solution is <u>suggested solution 1</u>:
*Entsprechend der Musterlösung zur Teilaufgabe '''(3)''' gilt:
+
*According to the sample solution to subtask '''(3)''' applies:
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  
*Hierbei beschreibt $E(X, \, U)$ den Weg "$j$&ndash;mal" zurück nach $S_2$ und wieder nach $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
+
*Here $E(X, \, U)$ describes the path "$j$&ndash;times" back to $S_2$ and again to $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
:$$E(X, U) =  1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D}
 
\hspace{0.3cm}
 
\hspace{0.3cm}

Revision as of 21:23, 20 October 2022

Ring and feedback in the state transition diagram

In order to determine the path weighting enumerator function  $T(X)$  of a convolutional code from the state transition diagram, it is necessary to reduce the diagram until it can be represented by a single connection from the initial state to the final state.

In the course of this diagram reduction can occur:

  • serial and parallel transitions,
  • a ring according to the sketch above,
  • a feedback according to the sketch below.


For these two graphs, find the correspondences  $E(X, \, U)$  and  $F(X, \, U)$  depending on the given functions  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$ .





Hints:



Questions

1

Which of the listed transitions are possible with the ring?

$S_1 → S_2 → S_3$,
$S_1 → S_2 → S_2 → S_2 → S_3$,
$S_1 → S_2 → S_1 → S_2 → S_3$.

2

What is the substitution  $E(X, \, U)$  of a ring?

$E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.

3

Which of the listed transitions are possible with feedback?

$S_1 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$.

4

What is the substitution  $F(X, \, U)$  of a feedback?

$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.


Solution

(1)  Correct are solutions 1 and 2:

  • In general terms, one first goes from $S_1$ to $S_2$, remains $j$–times in the state $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$, and finally continues from $S_2$ to $S_3$.


(2)  Correct is the solution suggestion 2:

  • In accordance with the explanations for the subtask (1), one obtains for the substitution of the ring
$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
  • The parenthesis expression gives $1/(1 \, –C)$.
$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$


(3)  Correct are the solutions 1, 3 and 4:

  • one goes first from $S_1$ to $S_2 \ \Rightarrow \ A(X, \, U)$,
  • then from $S_2$ to $S_3 \ \Rightarrow \ C(X, \, U)$,
  • then $j$–times back to $S_2$ and again to $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
  • finally from $S_3$ to $S_4 \ \Rightarrow \ B(X, \, U)$,


(4)  Thus, the correct solution is suggested solution 1:

  • According to the sample solution to subtask (3) applies:
$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  • Here $E(X, \, U)$ describes the path "$j$–times" back to $S_2$ and again to $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$