Difference between revisions of "Aufgaben:Exercise 4.4Z: Supplement to Exercise 4.4"
Line 6: | Line 6: | ||
* Known are all probabilities pi=Pr(xi=1) and qi=Pr(xi=0)=1−pi with index i=1, ..., n. | * Known are all probabilities pi=Pr(xi=1) and qi=Pr(xi=0)=1−pi with index i=1, ..., n. | ||
* What we are looking for is the probability that the number of ones in this vector is even. | * What we are looking for is the probability that the number of ones in this vector is even. | ||
− | * Or expressed using the [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]: What is the probability Pr[wH(x_) is\even]? | + | * Or expressed using the [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]: What is the probability Pr[wH(x_) is even]? |
Line 13: | Line 13: | ||
:Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084. | :Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084. | ||
* Blue font means "wH(x_) is even". Red font stands for "wH(x_) is odd." | * Blue font means "wH(x_) is even". Red font stands for "wH(x_) is odd." | ||
− | *The probability Pr[wH(x_)\is\even] is the sum of the blue numbers in the last column. | + | *The probability Pr[wH(x_) is even] is the sum of the blue numbers in the last column. |
*The sum of the red numbers gives Pr[wH(x_) is odd]=1−Pr[wH(x_) is even]. | *The sum of the red numbers gives Pr[wH(x_) is odd]=1−Pr[wH(x_) is even]. | ||
− | Gallager | + | Gallager solved the problem in an analytical way: |
− | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$$ {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} even} \right ] |
\hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$ | \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$ | ||
− | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm | + | :$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm is \hspace{0.15cm} odd} |
\right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$ | \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$ | ||
− | + | Here the following auxiliary variable is used: | |
:$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) | :$$\pi = \prod\limits_{i =1}^{n} \hspace{0.25cm}(1-2p_i) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | One applies the equation, for example, to calculate the extrinsic L–values of a <i>single parity–check code</i> . | |
− | + | Indeed, as already pointed out in [[Aufgaben:Exercise_4.4:_Extrinsic_L-values_at_SPC| "Exercise A4.4"]] the extrinsic L–value with Hamming–weight wH is the truncated sequence x_(−i): | |
:$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | :$$L_{\rm E}(i) = {\rm ln} \hspace{0.15cm}\frac{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]}{{\rm Pr} \left [w_{\rm H}(\underline{x}^{(-i)})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \hspace{0.05cm} | \hspace{0.05cm}\underline{y} \hspace{0.05cm}\right ]} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Here it is taken into account that for LE(i) one may refer only to the other symbols (j ≠ i) : | |
:x_(−i)=(x1, ...,xi−1,xi+1, ...,xn). | :x_(−i)=(x1, ...,xi−1,xi+1, ...,xn). | ||
Revision as of 00:09, 30 October 2022
The information theorist "Robert G. Gallager" already in 1963 dealt with the following problem:
- Given a random vector x_=(x1,x2, ...,xn) with n binary elements xi∈{0,1}.
- Known are all probabilities pi=Pr(xi=1) and qi=Pr(xi=0)=1−pi with index i=1, ..., n.
- What we are looking for is the probability that the number of ones in this vector is even.
- Or expressed using the "Hamming weight": What is the probability Pr[wH(x_) is even]?
The graph illustrates the task for the example n=4 and p1=0.2, p2=0.9, p3=0.3 and p4=0.6.
- For the row highlighted in green ⇒ x_=(1,0,0,1) holds wH(x_)=2 and
- Pr(x_)=p1⋅q2⋅q3⋅p4=0.0084.
- Blue font means "wH(x_) is even". Red font stands for "wH(x_) is odd."
- The probability Pr[wH(x_) is even] is the sum of the blue numbers in the last column.
- The sum of the red numbers gives Pr[wH(x_) is odd]=1−Pr[wH(x_) is even].
Gallager solved the problem in an analytical way:
- Pr[wH(x_)iseven] = 1/2⋅[1+π],
- Pr[wH(x_)isodd] = 1/2⋅[1−π].
Here the following auxiliary variable is used:
- π=n∏i=1(1−2pi).
One applies the equation, for example, to calculate the extrinsic L–values of a single parity–check code .
Indeed, as already pointed out in "Exercise A4.4" the extrinsic L–value with Hamming–weight wH is the truncated sequence x_(−i):
- LE(i)=lnPr[wH(x_(−i))istgerade|y_]Pr[wH(x_(−i))istungerade|y_].
Here it is taken into account that for LE(i) one may refer only to the other symbols (j≠i) :
- x_(−i)=(x1, ...,xi−1,xi+1, ...,xn).
Hints:
- This exercise belongs to the chapter "Soft–in Soft–out Decoder".
- Reference is made in particular to the page "For calculating the extrinsic L–values".
- The exercise is intended as a supplement to "Exercise 4.4" .
Questions
Solution
(1) According to the adjacent table applies:
- Pr[wH(x_)iseven]=Pr[wH=0]+Pr[wH=2].
With the probabilities
- p1=Pr(x1=1) = 0.2,q1=Pr(x1=0)=0.8,
- p2=Pr(x2=1) = 0.9,q2=Pr(x2=0)=0.1
one obtains:
- Pr[wH(x_)=0] = Pr[(x1=0)∩(x2=0)]=q1⋅q2=0.8⋅0.1=0.08,
- Pr[wH(x_)=2] = Pr[(x1=1)∩(x2=1)]=p1⋅p2=0.2⋅0.9=0.18
- ⇒Pr[wH(x_)iseven]=0.8+0.18=0.26_.
The Gallager's equation provides for the same set of parameters:
- Pr[wH(x_)iseven] = 0.5+0.5⋅2∏i=1(1−2⋅pi)=0.5+0.5⋅(1−2⋅0.2)⋅(1−2⋅0.9)=0.26.
The equation given by Gallager 1963 was hereby verified for n=2.
(2) In the second table, the four combinations with an even number of ones are marked in blue. The probabilities of occurrence of each combination are given in the last column. Thus, the result is:
- Pr[wH(x_)iseven]=0.056+0.216+0.006+0.126=0.404_.
The red rows provide the complementary event:
- Pr[wH(x_)isodd]=0.024+0.504+0.014+0.054=0.596.
The Gallager's equation again gives the exact same result, although it should be noted that this equation is valid for all n and all arbitrary probabilities:
- Pr[wH(x_)iseven] = 0.5+0.5⋅3∏i=1(1−2⋅pi)
- ⇒Pr[wH(x_)iseven] = 0.5+0.5⋅(+0.6)⋅(−0.8)⋅(+0.4)=0.404.
(3) According to the specification page applies:
- π=4∏i=1(1−2⋅pi) = (1−2⋅0.2)⋅(1−2⋅0.9)⋅(1−2⋅0.3)⋅(1−2⋅0.6)
- ⇒π=4∏i=1(1−2⋅pi) = (+0.6)⋅(−0.8)⋅(+0.4)⋅(−0.2)=0.0384.
From this can be calculated:
- Pr(blue)=Pr[wH(x_)iseven] = 0.5+0.5⋅π=0.5+0.5⋅0.0384=0.5192_,
- Pr(red)=Pr[wH(x_)isodd] = 0.5−0.5⋅π=0.5−0.5⋅0.0384=0.4808_.
If you add up the blue and red probabilities on the information page, you get exactly the values calculated here.
For the quotient we get:
- Q=Pr[wH(x_)iseven]Pr[wH(x_)isodd]=0.51920.4808=1.0799_.
(4) For the single parity–check code, the extrinsic L value with respect to the ith bit was specified as follows:
- LE(i)=lnPr[wH(x_(−i))iseven|y_]Pr[wH(x_(−i))isodd|y_],
or:
- LE(i)=ln1+∏j≠i(1−2⋅pj)1−∏j≠i(1−2⋅pj).
At SPC (5, 4, 2) ⇒ n=5, this product for i=5 results from the following four factors:
- π=∏j=1,2,3,4(1−2⋅pj)=(1−2⋅p1)⋅(1−2⋅p2)⋅(1−2⋅p3)⋅(1−2⋅p4).
The comparison with the subtask (3) shows that LE(i=5)=lnQ=ln(1.0799) ≈0.077_.
(5) Correct is proposed solution 3 because the result for LE(i=5) is independent of p5.