Difference between revisions of "Aufgaben:Exercise 4.6Z: Basics of Product Codes"

From LNTwww
Line 12: Line 12:
  
 
Hints:
 
Hints:
*The exercise belongs to the chapter  [[Channel_Coding/The_Basics_of_Product_Codes|"Basics of a Product Code"]].
+
*This exercise belongs to the chapter  [[Channel_Coding/The_Basics_of_Product_Codes|"Basics of a Product Code"]].
 
*Reference is made in particular to the page  [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_Product_Code|"Basic structure of a product code"]].
 
*Reference is made in particular to the page  [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_Product_Code|"Basic structure of a product code"]].
 
*The two component codes are also covered in the  [[Aufgaben:Aufgabe_4.6:_Produktcode–Generierung|"Exercise 4.6"]] .
 
*The two component codes are also covered in the  [[Aufgaben:Aufgabe_4.6:_Produktcode–Generierung|"Exercise 4.6"]] .
Line 22: Line 22:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen erlaubt die Generatormatrix&nbsp; $\mathbf{G}_1$&nbsp; über den Code&nbsp; $\mathcal{C}_1$?
+
{What statements does the generator matrix&nbsp; $\mathbf{G}_1$&nbsp; allow about the code&nbsp; $\mathcal{C}_1$?
 
|type="[]"}
 
|type="[]"}
+ Die Coderate von&nbsp; $\mathcal{C}_1$&nbsp; ist&nbsp; $R_1 = 4/7$.
+
+ The code rate of&nbsp; $\mathcal{C}_1$&nbsp; is&nbsp; $R_1 = 4/7$.
+ Der Code&nbsp; $\mathcal{C}_1$&nbsp; ist systematisch.
+
+ The code&nbsp; $\mathcal{C}_1$&nbsp; is systematic.
- $\mathcal{C}_1$&nbsp; ist ein verkürzter Hamming&ndash;Code.
+
- $\mathcal{C}_1$&nbsp; is a truncated Hamming code.
+ Die minimale Distanz dieses Codes ist&nbsp; $d_1 = 3$.
+
+ The minimum distance of this code is&nbsp; $d_1 = 3$.
  
{Welche Aussagen erlaubt die Generatormatrix&nbsp; $\mathbf{G}_2$&nbsp; über den Code&nbsp; $\mathcal{C}_2$?
+
{What statements does the generator matrix&nbsp; $\mathbf{G}_2$&nbsp; allow about the code&nbsp; $\mathcal{C}_2$?
 
|type="[]"}
 
|type="[]"}
- Die Coderate von&nbsp; $\mathcal{C}_2$&nbsp; ist&nbsp; $R_2 = 4/7$.
+
- The code rate of&nbsp; $\mathcal{C}_2$&nbsp; is&nbsp; $R_2 = 4/7$.
+ Der Code&nbsp; $\mathcal{C}_2$&nbsp; ist systematisch.
+
+ The code&nbsp; $\mathcal{C}_2$&nbsp; is systematic.
+ $\mathcal{C}_2$&nbsp; ist ein verkürzter Hamming&ndash;Code.
+
+ $\mathcal{C}_2$&nbsp; is a truncated Hamming code.
+ Die minimale Distanz dieses Codes ist&nbsp; $d_2 = 3$.
+
+ The minimum distance of this code is&nbsp; $d_2 = 3$.
  
{Geben Sie die Parameter des Produktcodes&nbsp; $\mathcal{C} = \mathcal{C}_1 &times \mathcal{C}_2$&nbsp; an.
+
{Specify the parameters of the product code&nbsp; $\mathcal{C} = \mathcal{C}_1 &times \mathcal{C}_2$&nbsp;.
 
|type="{}"}
 
|type="{}"}
 
$k \hspace{0.25cm} = \ ${ 12 3% }
 
$k \hspace{0.25cm} = \ ${ 12 3% }
Line 44: Line 44:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Aussagen 1, 2 und 4</u>:
+
'''(1)'''&nbsp; Correct are <u>statements 1, 2 and 4</u>:
* Die Anzahl der Zeilen der Generatormatrix $\mathbf{G}_1$ gibt die Länge des Informationsblocks an &nbsp; &#8658; &nbsp; $k = 4$.  
+
* The number of rows of the generator matrix $\mathbf{G}_1$ indicates the length of the information block &nbsp; &#8658; &nbsp; $k = 4$.  
* Die Codewortlänge  ist gleich der Anzahl der Spalten &nbsp; &#8658; &nbsp; $n=4$ &nbsp; &#8658; &nbsp; Coderate $R = k/n = 4/7$.
+
* The codeword length is equal to the number of columns &nbsp; &#8658; &nbsp; $n=4$ &nbsp; &#8658; &nbsp; Code rate $R = k/n = 4/7$.
* Der Code ist systematisch, da die Generatormatrix $\mathbf{G}_1$ mit einer $4 &times 4$&ndash;Diagonalmatrix beginnt.
+
* The code is systematic because the generator matrix $\mathbf{G}_1$ starts with a $4 &times 4$ diagonal matrix.
* Es handelt sich um einen "normalen" Hammingcode.  
+
*This is a "normal" Hamming code.  
*Für diesen gilt mit der Codewortlänge $n$ und der Anzahl der Prüfbits &nbsp; &#8658; &nbsp; $m = n - k$ der Zusammenhang $n = 2^m - 1$.
+
*For this, with the codeword length $n$ and the number of check bits &nbsp; &#8658; &nbsp; $m = n - k$, the relation $n = 2^m - 1$ holds.
* Im vorliegenden Fall handelt es sich um den (normalen) Hammingcode $\rm (7, \ 4, \ 3)$.  
+
*In the present case, this is the (normal) Hamming code $\rm (7, \ 4, \ 3)$.  
*Der letzte Parameter in dieser Codebezeichnung gibt die minimale Distanz an &nbsp; &#8658; &nbsp; $d_{\rm min} = 3$.
+
*The last parameter in this code label specifies the minimum distance &nbsp; &#8658; &nbsp; $d_{\rm min} = 3$.
  
  
'''(2)'''&nbsp; Richtig sind die <u>Aussagen 2, 3 und 4</u>:  
+
'''(2)'''&nbsp; Correct <u>statements 2, 3 and 4</u>:  
*Es handelt sich um einen verkürzten Hammingcode mit dem Parameter $n = 6, \ k = 3$ und $d_{\rm min} = 3$, ebenfalls in systematischer Form.  
+
*This is a truncated Hamming code with parameter $n = 6, \ k = 3$ and $d_{\rm min} = 3$, also in systematic form.  
*Die Coderate beträgt $R = 1/2$.
+
*The code rate is $R = 1/2$.
  
  
'''(3)'''&nbsp; Die Grundstruktur des Produktcodes ist auf der Seite [[Channel_Coding/Grundlegendes_zu_den_Produktcodes#Grundstruktur_eines_Produktcodes|Grundstruktur eines Produktcodes]] dargestellt.  
+
'''(3)'''&nbsp; The basic structure of the product code is shown on the [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_product_code|"Basic structure of a product code"]] page.  
* Man erkennt den Informationsblock mit $k = k_1 \cdot k_2 = 4 \cdot 3 \ \underline{= 12}$,  
+
* You can see the information block with $k = k_1 \cdot k_2 = 4 \cdot 3 \ \underline{= 12}$,  
* Die Codewortlänge ist die Gesamtzahl aller Bit: $n = n_1 \cdot n_2 = 7 \cdot 6 \ \underline{= 42}$.
+
* The codeword length is the total number of all bits: $n = n_1 \cdot n_2 = 7 \cdot 6 \ \underline{= 42}$.
* Die Coderate ergibt sich somit zu $R = k/n = 12/42 = 2/7$.  
+
*The code rate is thus given by $R = k/n = 12/42 = 2/7$.  
*Oder: &nbsp; $R = R_1 \cdot R_2 = 4/7 \cdot 1/2 \ \underline{= 2/7} \approx 0.289$.
+
*Or: &nbsp; $R = R_1 \cdot R_2 = 4/7 \cdot 1/2 \ \underline{= 2/7} \approx 0.289$.
* Die freie Distanz beträgt $d = d_1 \cdot d_2 = 3 \cdot 3 \ \underline{= 9}$.
+
* The free distance is $d = d_1 \cdot d_2 = 3 \cdot 3 \ \underline{= 9}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:04, 31 October 2022

Generator matrices of the component codes

We consider here a product code according to the description on page  "Basic structure of a product code". The two component codes  $\mathcal{C}_1$  and  $\mathcal{C}_2$  are defined by the generator matrices  $\mathbf{G}_1$  and  $\mathbf{G}_2$  given on the right.





Hints:



Questions

1

What statements does the generator matrix  $\mathbf{G}_1$  allow about the code  $\mathcal{C}_1$?

The code rate of  $\mathcal{C}_1$  is  $R_1 = 4/7$.
The code  $\mathcal{C}_1$  is systematic.
$\mathcal{C}_1$  is a truncated Hamming code.
The minimum distance of this code is  $d_1 = 3$.

2

What statements does the generator matrix  $\mathbf{G}_2$  allow about the code  $\mathcal{C}_2$?

The code rate of  $\mathcal{C}_2$  is  $R_2 = 4/7$.
The code  $\mathcal{C}_2$  is systematic.
$\mathcal{C}_2$  is a truncated Hamming code.
The minimum distance of this code is  $d_2 = 3$.

3

Specify the parameters of the product code  $\mathcal{C} = \mathcal{C}_1 × \mathcal{C}_2$ .

$k \hspace{0.25cm} = \ $

$n \hspace{0.25cm} = \ $

$d \hspace{0.25cm} = \ $

$R \hspace{0.15cm} = \ $


Solution

(1)  Correct are statements 1, 2 and 4:

  • The number of rows of the generator matrix $\mathbf{G}_1$ indicates the length of the information block   ⇒   $k = 4$.
  • The codeword length is equal to the number of columns   ⇒   $n=4$   ⇒   Code rate $R = k/n = 4/7$.
  • The code is systematic because the generator matrix $\mathbf{G}_1$ starts with a $4 × 4$ diagonal matrix.
  • This is a "normal" Hamming code.
  • For this, with the codeword length $n$ and the number of check bits   ⇒   $m = n - k$, the relation $n = 2^m - 1$ holds.
  • In the present case, this is the (normal) Hamming code $\rm (7, \ 4, \ 3)$.
  • The last parameter in this code label specifies the minimum distance   ⇒   $d_{\rm min} = 3$.


(2)  Correct statements 2, 3 and 4:

  • This is a truncated Hamming code with parameter $n = 6, \ k = 3$ and $d_{\rm min} = 3$, also in systematic form.
  • The code rate is $R = 1/2$.


(3)  The basic structure of the product code is shown on the "Basic structure of a product code" page.

  • You can see the information block with $k = k_1 \cdot k_2 = 4 \cdot 3 \ \underline{= 12}$,
  • The codeword length is the total number of all bits: $n = n_1 \cdot n_2 = 7 \cdot 6 \ \underline{= 42}$.
  • The code rate is thus given by $R = k/n = 12/42 = 2/7$.
  • Or:   $R = R_1 \cdot R_2 = 4/7 \cdot 1/2 \ \underline{= 2/7} \approx 0.289$.
  • The free distance is $d = d_1 \cdot d_2 = 3 \cdot 3 \ \underline{= 9}$.