Difference between revisions of "Kontinuierliche und diskrete Spektren (Lernvideo)"
m (Text replacement - "_seit" to "_since") |
|||
Line 20: | Line 20: | ||
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von | ||
− | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. | + | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|»Tasnád Kernetzky«]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. |
Revision as of 18:03, 15 March 2023
Teil 1
Gegenübergestellt werden die Spektraleigenschaften eines Dreieckimpulses $g(t)$ mit kontinuierlichem Spektrum $G(f)$ und eines periodischen Dreiecksignals $x(t)$ mit Linienspektrum $X(f)$. Der Zusammenhang ergibt sich aus der Faltung entsprechend $x(t)= g(t) \star p(t)$, wobei $p(t)$ einen Diracpuls (unendliche Summe von äquidistant verschobenen Diracimpulsen) bezeichnet. Der Zusammenhang im Spektralbereich lautet $X(f)= G(f) \cdot P(f)$. Die Spektralfunktion $P(f)$ des Diracpulses $p(t)$ ist ebenfalls ein Diracpuls, aber nun im Frequenzbereich (Dauer 6:19).
Teil 2
Anhand des gleichen Beispiels wird nun der Spektralwert $G(f = f_{\rm B})$ des Dreieckimpulses bei der festen Bezugsfrequenz $f_{\rm B}$ mit dem Diracgewicht des periodischen Dreiecksignals $x(t)$ bei der Frequenz $f = f_{\rm B}$ verglichen. Dabei ergeben sich viele signifikante Gemeinsamkeiten, aber auch einige grundlegende Unterschiede. Die Ergebnisse hängen unter Anderem von der Periodendauer $T_0$ des Signals $x(t)$ ab (Dauer 5:12).
Dieses Lernvideo wurde 2005 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder und Klaus Eichin, Sprecher und Realisierung: Thorsten Kalweit.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von »Tasnád Kernetzky« und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können.