Difference between revisions of "Prinzip der Additionsmethode (Lernvideo)"
m (Text replacement - "_seit" to "_since") |
|||
Line 18: | Line 18: | ||
Buch und Regie: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_since_1974.29|Günter Söder]], Sprecher: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28at_LNT_from_1972-2011.29|Klaus Eichin]], Realisierung: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Winfried_Kretzinger_.28at_LNT_from_1973-2004.29|Winfried Kretzinger]]. | Buch und Regie: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28at_LNT_since_1974.29|Günter Söder]], Sprecher: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28at_LNT_from_1972-2011.29|Klaus Eichin]], Realisierung: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Winfried_Kretzinger_.28at_LNT_from_1973-2004.29|Winfried Kretzinger]]. | ||
− | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 | + | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von |
+ | [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28at_L.C3.9CT_since_2014.29|»Tasnád Kernetzky«]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können. | ||
+ | |||
+ | |||
+ | <hr style="border-color: #000000; border-width: 15px;"> | ||
+ | '''English summary:''' | ||
+ | |||
+ | |||
+ | |||
+ | =Analog and digital signals= |
Revision as of 19:57, 18 March 2023
Inhalt
Zur Erzeugung einer gaußverteilten Zufallsgröße kann man die Tatsache nutzen, dass sich eine solche Gaußverteilung zum Beispiel dann ergibt, wenn man eine Gleichverteilung (Rechteck-WDF) unendlich oft mit sich selbst faltet. Das Lernvideo (Dauer 3:42) verdeutlicht das Prinzip:
- Die Summe $s = x_1 + x_2$ besitzt eine dreieckförmige WDF $f_s(s)$ zwischen $\pm 1$, wenn die zwei unabhängigen Komponenten $x_1$ und $x_2$ jeweils zwischen $\pm 0.5$ gleichverteilt sind. Dies ist die erste einfache Approximation der Gaußverteilung basierend auf der Faltung für den Prarneter $I = 2$.
- Addiert man nun nicht nur zwei, sondern $I$ solche statistisch unabhängige Komponenten, so wird die Approximation immer besser, je größer $I$ ist. Man erkauft sich die bessere Approximationsqualität mit steigendem $I$ allerdings auch mit einem größeren Rechenaufwand.
- Erforderlich ist dabei stets eine Varianzanpassung, das heißt je größer $I$ ist, desto schmäler muss die rechteckförmige WDF $f_x(x)$ der als identisch angenommenen Eingangsgrößen $x_i$ mit $i = 1$, ... ,$I$ sein, wenn $\sigma_s$ vorgegeben ist.
- Mit der hier beschriebenen Additionsmethode lässt sich der innere Bereich der Gaußschen Glockenkurve sehr gut nachbilden. Dagegen werden die Ausläufer der Gaußkurve unzureichend nachgebildet, außer, man wählt $I$ extrem groß.
Dieses Lernvideo wurde 2003 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Günter Söder, Sprecher: Klaus Eichin, Realisierung: Winfried Kretzinger.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 von »Tasnád Kernetzky« und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern (wie Firefox, Chrome, Safari) als auch von Smartphones wiedergegeben werden zu können.
English summary: