Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Generation of Walsh functions"

From LNTwww
 
Line 62: Line 62:
 
*The first German version was created in 2007 by   [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]   in the context of his diploma thesis with "FlashMX–Actionscript"   (Supervisor:  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*The first German version was created in 2007 by   [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]   in the context of his diploma thesis with "FlashMX–Actionscript"   (Supervisor:  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*2018/2019 the applet was converted on "HTML5" and redesigned by   [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  (Engineering practice, supervisor:  [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ).
 
*2018/2019 the applet was converted on "HTML5" and redesigned by   [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  (Engineering practice, supervisor:  [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ).
*2020 this English version was made by  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  (working student) and  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]].  Translation using "www.DeepL.com/Translator" (free version).
+
*2020 this English version was made by  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]  (working student) and  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]].   
 
==Call the applet again==
 
==Call the applet again==
 
<br>
 
<br>
 
{{LntAppletLinkEnDe|walsh_en|walsh}}
 
{{LntAppletLinkEnDe|walsh_en|walsh}}
 
<br><br>
 
<br><br>

Latest revision as of 20:05, 21 March 2023

Open Applet in new Tab   Deutsche Version Öffnen

Program description


This applet allows to display the Hadamard matrices  HJ  for the construction of the Walsh functions  wj.  The factor  J  of the band spreading as well as the selection of the individual Walsh functions  (by means of a blue border around rows of the matrix)  can be changed.

Theoretical background


Application


The  Walsh functions  are a group of periodic orthogonal functions.  Their application in digital signal processing mainly lies in the use for band spreading in CDMA systems, for example the mobile radio standard UMTS.

  • Due to their orthogonal properties and the favourable periodic cross-correlation function  (PCCF), the Walsh functions represent optimal spreading sequences for a distortion-free channel and a synchronous CDMA system.  If you take any two lines and form the correlation (averaging over the products), the PCCF value is always zero.
  • In asynchronous operation  (example:   uplink of a mobile radio system)  or de-orthogonalization due to multipath propagation, Walsh functions alone are not necessarily suitable for band spreading.
  • In terms of  (PACF)  (periodic autocorrelation function) these sequences are not as good:  Each individual Walsh function has a different PACF and each individual PACF is less good than a comparable pseudo noise  (PN)  sequence. That means:   The synchronization is more difficult with Walsh functions than with PN sequences.


Construction


The construction of Walsh functions can be done recursively using the  Hadamard matrices.

  • A Hadamard matrix  HJ  of order  J  is a  J×J  matrix, which contains line by line the  ±1  weights of the Walsh sequences.
  • The orders of the Hadamard matrices are fixed to powers of two, i.e.  J=2G  applies to a natural number  G. Starting from H1=[+1] and
H2=[+1+1+11]

the following relationship applies to the generation of further Hadamard matrices:

H2N=[+HN+HN+HNHN]


Example:  The graphic shows the Hadamard matrix  H8  (right) and the  J1  spreading sequences which can be constructed with it.

Walsh spreading sequences  (J=8)  and Hadamard matrix  H8 
  • Only  J1, because the unspreaded sequence  w0(t)  is usually not used.
  • Please note the color assignment between the lines of the Hadamard matrix and the spreading sequences  wj(t).
  • The submatrix  H4  is highlighted in yellow.


How to use the applet


Bildschirm Walsh EN 3.png

    (A)     Selection of  G   ⇒   Band spread factor:  J=2G

    (B)     Selection of the Walsh function  wj  to be marked 

About the authors

This interactive calculation tool was designed and realized at the  Lehrstuhl für Nachrichtentechnik  (LNT)  of the  Technical University of Munich  (TUM).

Call the applet again


Open Applet in new Tab   Deutsche Version Öffnen