Difference between revisions of "Aufgaben:Exercise 1.5Z: Sinc-shaped Impulse Response"

From LNTwww
Line 71: Line 71:
 
$$y(t = 0 ) = {A_y } = 0.$$
 
$$y(t = 0 ) = {A_y } = 0.$$
  
'''3.'''
+
 
'''4.'''
+
'''3.''' Der Frequenzgang bei $f = f_0 =$ 100 Hz ist nach den Berechnungen zu Punkt a) gleich $K =$ 0.5. Deshalb ergibt sich $A_y = A_x/2 =$ 2 V. Zum gleichen Ergebnis kommt man über die Faltung entsprechend obiger Gleichung. Für $a = 2f_0/Δf =$ 0.2 ist das Integral gleich $π/2$ und man erhält
'''5.'''
+
$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$
'''6.'''
+
 
'''7.'''
+
 
 +
'''4.''' Genau bei $f =$ 0.5 kHz ist der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle: $H(f = f_0) = K/2$. Somit ist die Amplitude des Ausgangssignals nur halb so groß wie unter c) berechnet, nämlich $A_y \underline{= 1 V}$. Zum gleichen Ergebnis kommt man mit $a = 2f_0/Δf =$ 1 über die Faltung.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^Kapitelx^]]
+
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^Einige systemtheoretische Tiefpassfunktionen^]]

Revision as of 18:48, 3 August 2016

si–förmige Impulsantwort (Aufgabe Z1.5)

Die Impulsantwort eines linearen zeitinvarianten (und akausalen) Systems wurde wie folgt ermittelt (siehe Grafik): $$h(t) = 500\hspace{0.05cm}\frac{1}{ {\rm s}}\cdot{\rm si}(\pi \cdot \frac{t}{ 1\hspace{0.1cm}{\rm ms}}) .$$ Berechnet werden sollen die Ausgangssignale $y(t)$, wenn am Eingang verschiedene Cosinusschwingungen unterschiedlicher Frequenz $f_0$ angelegt werden: $$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .$$ Die Lösung kann entweder im Zeitbereich oder auch im Frequenzbereich gefunden werden. In der Musterlösung werden jeweils beide Lösungswege angegeben. Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 1.3. Gegeben ist dazu das folgende bestimmte Integral: $$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}$$


Fragebogen

1

Berechnen Sie den Frequenzgang $H(f)$ des LZI-Systems. Wie groß sind die äquivalente Bandbreite und der Gleichsignalübertragungsfaktor?

$\Delta f =$

kHz
$H(f = 0) =$

2

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 1 {\rm kHz}: y(t = 0) =$

V

3

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 0.1 {\rm kHz}: y(t = 0) =$

V

4

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.5 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 0.5 {\rm kHz}: y(t = 0) =$

V


Musterlösung

1. Ein Vergleich mit den Gleichungen in Abschnitt 2 von Kapitel 1.3 – oder auch die Anwendung der Fourierrücktransformation – zeigt, dass $H(f)$ ein idealer Tiefpass ist: $$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$ Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand $Δt =$ 1 ms auf. Daraus folgt die äquivalente Bandbreite $Δf \rm \underline{ = 1 kHz}$. Wäre $K =$ 1, so müsste $h(0) = Δf =$ 1000 1/s gelten. Wegen der Angabe $h(0) = 500 1/s = Δf/2$ ist somit der Gleichsignalübertragungsfaktor $K = H(f = 0) \rm \underline{= 0.5}$.


2. Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen. Für das Ausgangsspektrum gilt: $$Y(f) = X(f)\cdot H(f) .$$ $X(f)$ besteht aus zwei Diracfunktionen bei $± f_0$, jeweils mit Gewicht $A_x/2 =$ 2 V. Bei $f = f_0 =$ 1 kHz > $Δf$/2 ist aber $H(f) =$ 0, so dass $Y(f) =$ 0 und damit auch $y(t) =$ 0 ist ⇒ $\underline{y(t = 0) = 0}$. Die Lösung im Zeitbereich basiert auf der Faltung: $$y(t) = x (t) * h (t) = \int\limits_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$ Zum Zeitpunkt $t =$ 0 erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion: $$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int\limits_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$ Mit der Substitution $u = π · Δf · τ$ kann hierfür auch geschrieben werden: $$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int\limits_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .$$ Hierbei ist die Konstante $a = 2f_0/Δf =$ 2. Mit diesem Wert liefert das angegebene Integral den Wert 0: $$y(t = 0 ) = {A_y } = 0.$$


3. Der Frequenzgang bei $f = f_0 =$ 100 Hz ist nach den Berechnungen zu Punkt a) gleich $K =$ 0.5. Deshalb ergibt sich $A_y = A_x/2 =$ 2 V. Zum gleichen Ergebnis kommt man über die Faltung entsprechend obiger Gleichung. Für $a = 2f_0/Δf =$ 0.2 ist das Integral gleich $π/2$ und man erhält $$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$


4. Genau bei $f =$ 0.5 kHz ist der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle: $H(f = f_0) = K/2$. Somit ist die Amplitude des Ausgangssignals nur halb so groß wie unter c) berechnet, nämlich $A_y \underline{= 1 V}$. Zum gleichen Ergebnis kommt man mit $a = 2f_0/Δf =$ 1 über die Faltung.