Difference between revisions of "Aufgaben:Exercise 2.6Z: Synchronous Demodulator"
From LNTwww
m (Markus verschob die Seite Zusatzaufgaben:2.6 Synchrondemodulator nach 2.6Z Synchrondemodulator, ohne dabei eine Weiterleitung anzulegen) |
|
(No difference)
|
Revision as of 12:57, 7 October 2016
- Das dargestellte Blockschaltbild zeigt ein Übertragungssystem mit Amplitudenmodulation (AM) und Synchrondemodulator (SD). Das Quellensignal bestehe aus zwei harmonischen Schwingungen mit den Frequenzen f2 = 2 kHz und f5 = 5 kHz:
- $$q(t) = {2 \, \rm V} \cdot {\rm cos}(\omega_2 t )+ {1 \, \rm V} \cdot {\rm sin}(\omega_5 t ) .$$
- Dieses Signal wird bei AM mit dem dimensionslosen Trägersignal z(t) = cos(ωT · t) der Trägerfrequenz fT = 50 kHz multipliziert. Bei Zweiseitenbandmodulation (ZSB–AM) ist der gestrichelt eingezeichnete Block unerheblich, so dass für das Sendesignal gilt:
- $$s(t) = q(t) \cdot {\rm cos}(\omega_{\rm T} t ) .$$
- Im Synchrondemodulator wird das Empfängersignal r(t), das bei idealem Kanal identisch mit s(t) ist, mit dem empfangsseitigem Trägersignal zE(t) multipliziert, wobei gilt:
- $$z_{\rm E}(t) = K \cdot {\rm cos}(\omega_{\rm T} t - \Delta \varphi ) .$$
- Dieses Signal sollte nicht nur frequenzsynchron mit z(t) sein, sondern auch phasensynchron – daher der Name „Synchrondemodulator”. Der obige Ansatz berücksichtigt einen Phasenversatz Δφ zwischen z(t) und zE(t), der idealerweise 0 sein sollte, sich bei realen Systemen aber oft nicht vermeiden lässt.
- Das Ausgangssignal b(t) des zweiten Multiplizierers beinhaltet neben dem gewünschten NF-Anteil auch Anteile um die doppelte Trägerfrequenz. Durch einen idealen Tiefpass – z.B. mit der Grenzfrequenz fT – lässt sich das Sinkensignal υ(t) gewinnen, das im Idealfall gleich dem Quellensignal q(t) sein sollte.
- Die Multiplikation beim Sender mit dem Trägersignal z(t) führt im Allgemeinen zu zwei Seitenbändern. Bei der Einseitenbandmodulation (ESB–AM) wird nur eines der beiden Bänder übertragen, zum Beispiel das untere Seitenband (USB). Damit erhält man bei idealem Kanal:
- $$r(t) = s(t)= {1 \, \rm V} \cdot {\rm cos}((\omega_{\rm T} - \omega_2 )t ) - {0.5 \, \rm V} \cdot {\rm sin}((\omega_{\rm T} - \omega_5 )t ) .$$
- Hier führt die Synchrondemodulation unter Berücksichtigung eines Phasenversatzes Δφ, der Konstante <nobr>K = 4</nobr> sowie des nachgeschalteten Tiefpasses zu folgendem verfälschten Sinkensignal:
- $$v(t)= {1 \, \rm V} \cdot \frac{1}{2}\cdot 4 \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {0.5 \, \rm V} \cdot \frac{1}{2}\cdot 4 \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
- $$\Rightarrow \hspace{0.5cm}v(t)= {2 \, \rm V} \cdot{\rm cos}( \omega_2 t - \Delta \varphi)+ {1 \, \rm V} \cdot{\rm sin}( \omega_5 t - \Delta \varphi)$$
- Im Idealfall phasensynchroner Demodulation (Δφ = 0) gilt wieder
- $$v(t) = q(t).$$
- Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.3 in diesem Buch. Die Thematik „Amplitudenmodulation/Synchrondemodulator” wird im Buch Modulationsverfahren noch ausführlich diskutiert werden.
- Gegeben sind die folgenden trigonometrischen Zusammenhänge:
- $$\cos^2(\alpha) = \frac{1}{2} \cdot \left [ 1 + \cos(2\alpha) \right ] \hspace{0.05cm}, \\ \cos(\alpha) \cdot \cos(\beta) = \frac{1}{2} \cdot \left[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \right] \\ \sin(\alpha) \cdot \cos(\beta) = \frac{1}{2} \cdot \left[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \right] \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- 1. Für das Bandpass–Signal nach dem zweiten Multiplizierer gilt:
- $$b(t) = r(t) \cdot z_{\rm E}(t)= q(t) \cdot z(t) \cdot z_{\rm E}(t)= K \cdot q(t)\cdot \cos^2(\omega_{\rm T} t).$$
- Mit der trigonometrischen Beziehung
- $$\cos^2(\omega_{\rm T} t) = \frac{1}{2} \cdot\left[ 1 + \cos(2\omega_{\rm T} t)\right]$$
- erhält man
- $$b(t) = \frac{K}{2} \cdot q(t) + \frac{K}{2} \cdot q(t)\cdot \cos(2\omega_{\rm T} t).$$
- Der zweite Anteil liegt um die doppelte Trägerfrequenz und wird durch den Tiefpass – zum Beispiel mit der Grenzfrequenz fT – entfernt. Damit erhält man:
- $$v(t) = \frac{K}{2} \cdot q(t) .$$
- Mit K = 2 ergibt sich eine ideale Demodulation:
- $$v(t) = q(t) .$$
- 2. Unter Berücksichtigung der Beziehung
- $$\cos(\omega_{\rm T} t) \cdot \cos(\omega_{\rm T} t - \Delta \varphi) = \frac{1}{2} \cdot \left[ \cos(\Delta \varphi)+ \cos(2\omega_{\rm T} t - \Delta \varphi) \right]$$
- sowie des nachgeschalteten Tiefpasses, der wieder den Anteil um die doppelte Trägerfrequenz entfernt, erhält man hier mit K = 2:
- $$v(t) = q(t) \cdot \cos(\Delta \varphi).$$
- Das heißt, ein Phasenversatz Δφ führt hier nur zu einer frequenzunabhängigen Dämpfung und nicht zu Dämpfungs– oder Phasenverzerrungen. Ein Phasenversatz um ±60° hat jeweils eine Halbierung des Signals zur Folge. Richtig sind demnach die Lösungsvorschläge 2 und 5.
- 3. Richtig ist hier der Lösungsvorschlag 4. Bei beiden Summanden tritt genau der gleiche Phasenversatz Δφ auf, und es kommt hier zu Phasenverzerrungen:
- $$v(t)= {2 \, \rm V} \cdot{\rm cos}( \omega_2 \cdot (t - \tau_2))+ {1 \, \rm V} \cdot{\rm sin}( \omega_5 t \cdot (t - \tau_5)),$$
- $${\rm wobei}\hspace{0.5cm}\tau_2 = \frac{\Delta \varphi}{\omega_2} \hspace{0.5cm}\ne \hspace{0.5cm} \tau_5 = \frac{\Delta \varphi}{\omega_5}.$$
- Ein Phasenversatz von 60° entsprechend π/3 führt hier zu den Verzögerungszeiten:
- $$\tau_2 = \frac{\pi/3}{2 \pi \cdot 2\,\,{\rm kHz }} \approx 83.3\,{\rm \mu s }, \hspace{0.5cm} \tau_5 = \frac{\pi/3}{2 \pi \cdot 5\,\,{\rm kHz }} \approx 33.3\,{\rm \mu s }.$$
- Das niederfrequentere Signal wird also stärker verzögert.