Difference between revisions of "Digital Signal Transmission/Properties of Nyquist Systems"
Line 19: | Line 19: | ||
\nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...</math> | \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...</math> | ||
als Nyquistimpuls <i>g</i><sub>Nyq</sub>(<i>t</i>), benannt nach dem Physiker Harry Nyquist.{{end}} <br><br> | als Nyquistimpuls <i>g</i><sub>Nyq</sub>(<i>t</i>), benannt nach dem Physiker Harry Nyquist.{{end}} <br><br> | ||
− | {{Beispiel}}''':''' Die Grafik zeigt das Detektionssignal <i>d</i>(<i>t</i>) eines solchen Nyquistsystems. Rot gepunktet sind die (gewichteten und verschobenen) Nyquistimpulse <i>a</i><sub>ν</sub> · <i>g</i><sub>Nyq</sub>(<i>t</i> – <i>νT</i>) eingezeichnet. <br> | + | {{Beispiel}}''':''' Die Grafik zeigt das Detektionssignal <i>d</i>(<i>t</i>) eines solchen Nyquistsystems. Rot gepunktet sind die (gewichteten und verschobenen) Nyquistimpulse <i>a</i><sub>ν</sub> · <i>g</i><sub>Nyq</sub>(<i>t</i> – <i>νT</i>) eingezeichnet. <br><br> |
− | [[File:P_ID1272__Dig_T_1_3_S1_v1.png|Detektionssignal bei Nyquistimpulsformung|class=fit]]<br> | + | [[File:P_ID1272__Dig_T_1_3_S1_v1.png|Detektionssignal bei Nyquistimpulsformung|class=fit]]<br><br> |
Zu den Detektionszeitpunkten gilt <i>d</i>(<i>ν</i><i>T</i>) = <i>a<sub>ν</sub></i> · <i>g</i><sub>Nyq</sub>(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (<i>ν</i> < 0) sowie die Vorläufer der nachfolgenden Impulse (<i>ν</i> > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols <i>a</i><sub>0</sub> nicht.<br><br> | Zu den Detektionszeitpunkten gilt <i>d</i>(<i>ν</i><i>T</i>) = <i>a<sub>ν</sub></i> · <i>g</i><sub>Nyq</sub>(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (<i>ν</i> < 0) sowie die Vorläufer der nachfolgenden Impulse (<i>ν</i> > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols <i>a</i><sub>0</sub> nicht.<br><br> | ||
Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls<br><br> | Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls<br><br> |
Revision as of 14:36, 21 November 2016
Erstes Nyquistkriterium im Zeitbereich
Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion des Signals
\(d(t) = \sum \limits_{\it (\nu)} a_\nu \cdot g_d ( t - \nu T)\)
zu den Zeitpunkten νT immer dann, wenn der Detektionsgrundimpuls gd(t)
- auf den Bereich | t | < T beschränkt ist, was für das Kapitel 1.2 vorausgesetzt wurde, oder
- äquidistante Nulldurchgänge zu den Zeitpunkten νT aufweist.
Aus Gründen einer möglichst einfachen Darstellung wird im Kapitel 1.3 das Detektionsstörsignal dN(t) als vernachlässigbar klein angenommen.
- \[g_d ( t = \nu T)= 0 \hspace{0.3cm}{\rm{f\ddot{u}r}}\hspace{0.3cm} \nu = \pm 1, \pm 2,\pm 3,\hspace{0.05cm}...\]
Zu den Detektionszeitpunkten gilt d(νT) = aν · gNyq(0), wie aus den blauen Kreisen und dem grünen Raster hervorgeht. Die Nachläufer der vorangegangenen Impulse (ν < 0) sowie die Vorläufer der nachfolgenden Impulse (ν > 0) beeinflussen beim Nyquistsystem die Detektion des Symbols a0 nicht.
Der Vollständigkeit halber sei erwähnt, dass für diese Grafik der Detektionsgrundimpuls
\(g_{\rm Nyq} ( t )= g_0 \cdot {\rm si} \left ( \frac{\pi \cdot
t}{T}\right)\cdot {\rm si} \left ( \frac{\pi \cdot t}{2 \cdot
T}\right)\)