Difference between revisions of "Aufgaben:Exercise 3.5Z: Kullback-Leibler Distance again"

From LNTwww
Line 66: Line 66:
  
  
{Input-Box Frage
+
{Welche Entropie besitzt die Zufallsgröße $X$ ?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\H(X)$ = {2 3% } $bit$
 +
 
 +
{Wie groß sind die Entropien der Zufallsgrößen $Y$ (Näherungen für $X$)? ?
 +
|type="{}"}
 +
$\N=1000  H(Y)$ = { 1.9968 1% } $bit$
 +
$\N=100  H(Y)$ = { 1.941 1% } $bit$
 +
$\N=10  H(Y)$ = { 1.6855 1%  } $bit$
 +
 
  
  

Revision as of 21:55, 24 November 2016

P ID2762 Inf Z 3 4.png

Die Wahrscheinlichkeitsfunktion lautet:

$$P_Y(X) = [\hspace{0.03cm}0.25\hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm},\hspace{0.03cm} 0.25 \hspace{0.03cm}, \hspace{0.03cm} 0.25\hspace{0.03cm}]\hspace{0.05cm}$$ Die Zufallsgröße $X$ ist also gekennzeichnet

  • durch den Symbolumfang $M=4$,
  • mit gleichen Wahrscheinlichkeiten.

Die Zufallsgröße $Y$ ist stets eine Näherung für $X$. Sie wurde per Simulation aus einer Gleichverteilung gewonnen, wobei jeweils nur $N$ Zufallswerte ausgewertet wurden. Das heißt: $P_Y(1)$,...,$P_Y(4)$ sind im herkömmlichen Sinn keine Wahrscheinlichkeiten. Sie beschreiben vielmehr relative Häufigkeiten.

Das Ergebnis der sechsten Versuchsreihe (mit $N=1000$) ird demnach durch die folgende Wahrscheinlichkeitsfunktion zusammengefasst:

$$P_Y(X) = [\hspace{0.05cm}0.225\hspace{0.05cm}, \hspace{0.05cm} 0.253\hspace{0.05cm},\hspace{0.05cm} 0.250 \hspace{0.05cm}, \hspace{0.05cm} 0.272\hspace{0.05cm}] \hspace{0.05cm}$$ Bei dieser Schreibweise ist bereits berücksichtigt, dass die Zufallsgrößen $X$ und $Y$ auf dem gleichen Alphabet $X =$ {1, 2, 3, 4} basieren.

Mit diesen Voraussetzungen gilt für die relative Entropie (englisch: Informational Divergence) zwischen den Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$ :

$D( P_X || P_Y) = E_X [ log_2 \frac{P_X(X)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_X(\mu) . log_2 \frac{P_X(\mu)}{P_Y(\mu)}$

Man bezeichnet $D( P_X || P_Y)$ als Kullback–Leibler–Distanz. Diese ist ein Maß für die Ähnlichkeit zwischen den beiden Wahrscheinlichkeitsfunktionen $P_X(.)$ und $P_Y(.)$. Die Erwartungswertbildung geschieht hier hinsichtlich der (tatsächlich gleichverteilten) Zufallsgröße $X$. Dies wird durch die Nomenklatur $E_X[.]$ angedeutet.

Eine zweite Form der Kullback–Leibler–Distanz ergibt sich durch die Erwartungswertbildung hinsichtlich der Zufallsgröße $Y \Rightarrow E_Y[.]$:

$D( P_Y || P_X) = E_Y [ log_2 \frac{P_Y(Y)}{P_Y(Y)}] = \sum\limits_{\mu=1}^M P_Y(\mu) . log_2 \frac{P_Y(\mu)}{P_X(\mu)}$

Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.1 dieses Buches. Die Angaben der Entropie $H(Y)$ und der Kullback–Leibler–Distanz $D( P_X || P_Y)$ in obiger Grafik sind in „bit” zu verstehen. die mit „???" versehenen Felder sollen von Ihnen in dieser Aufgabe ergänzt werden.













Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Welche Entropie besitzt die Zufallsgröße $X$ ?

$\H(X)$ = {2 3% } $bit$

3

Wie groß sind die Entropien der Zufallsgrößen $Y$ (Näherungen für $X$)? ?

$\N=1000 H(Y)$ =

$bit$
$\N=100 H(Y)$ =

$bit$
$\N=10 H(Y)$ =

$bit$


Musterlösung

1. 2. 3. 4. 5. 6. 7.