Difference between revisions of "Aufgaben:Exercise 3.9: Conditional Mutual Information"
Line 70: | Line 70: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.'''[[File:P_ID2814__Inf_A_3_8a.png|right|]] |
− | '''2.''' | + | Die folgende Grafik gilt für $Z = 1 \Rightarrow W = X + Y$. Unter den Voraussetzungen $P_X(X) = [1/2, 1/2]$ sowie $P_Y(Y) = [1/2, 1/2]$ ergeben sich somit die Verbundwahrscheinlichkeiten $P_{ XW|Z=1 }(X, W)$ entsprechend der rechten Grafik (graue Hinterlegung). |
− | '''3.''' | + | |
− | '''4.''' | + | Damit gilt für die Transinformation unter der festen Bedingung $Z = 1$: |
+ | |||
+ | $$I(X;W \mid Z=1) = \sum\limits_{(x,w) \epsilon supp (P_{ XW } \mid Z=1)} P_{ XW \mid Z=1 }(x,w) . log_2 \frac{ P_{ XW \mid Z=1 }(x,w)}{ P_X(X) . P_{ W \mid Z=1 } (w)}=$$ | ||
+ | $$= 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} = 0.5 (bit)$$ | ||
+ | Der erste Term fasst die beiden horizontal schraffierten Felder in obiger Grafik zusammen, der zweite Term die vertikal schraffierten Felder. Letztere liefern wegen $log_2 (1) = 0$ keinen Beitrag. | ||
+ | |||
+ | |||
+ | [[File:P_ID2815__Inf_A_3_8b.png|right|]] | ||
+ | '''2.''' Für $Z = 2$ gilt zwar '$W = \{4, 6, 8\}$, aber hinsichtlich der Wahrscheinlichkeitsfunktionen ändert sich gegenüber der Teilaufgabe (a) nichts. Demzufolge erhält man auch die gleiche bedingte Transinformation: | ||
+ | |||
+ | $I(X;W \mid Z=2) = I(X;W \mid Z=1) = 0.5 (bit)$ | ||
+ | |||
+ | |||
+ | '''3.''' Es ist berücksichtigt, dass entsprechend den Teilaufgaben (a) und (b) die bedingten Transinformationen für gegebenes $Z = 1$ und gegebenes $Z = 2$ gleich sind. Damit ist $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße $Z = \{1, 2\}$ mit $P_Z(Z) = [p, 1 – p]$, unabhängig von p. Das Ergebnis gilt insbesondere auch für $p = 1/2$ und $p = 3/4$. | ||
+ | |||
+ | |||
+ | '''4.''' Die Verbundwahrscheinlichkeiten P_{ XW }(⋅) hängen auch von den $Z$–Wahrscheinlichkeiten $p$ und $1 – p$ ab. Für $Pr(Z = 1) = Pr(Z = 2) = 1/2$ ergibt sich das nachfolgend skizzierte Schema. Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei: | ||
'''5.''' | '''5.''' | ||
'''6.''' | '''6.''' |
Revision as of 21:30, 26 November 2016
Wir gehen von den statistisch unabhängigen Zufallsgrößen $X$, $Y$ und $Z$mit den folgenden Eigenschaften aus :
$X \epsilon \{1,2\}$ , $Y \epsilon \{1,2\}$ , $Z \epsilon \{1,2\}$
$P_X(X) = P_Y(Y) = [ 1/2 , 1/2]$ , $P_Z(Z) = [ p, 1-p]$.
Aus $X$, $Y$ und $Z$ bilden wir die neue Zufallsgröße
$W = (X+Y). Z$.
Damit ist offensichtlich, dass es zwischen den beiden Zufallsgrößen $X$und W statistische Abhängigkeiten gibt, die sich auch in der Transinformation $I(X; W) ≠ 0$ zeigen werden.
Außerdem wird auch $I(Y; W) ≠ 04 sowie $I(Z; W) ≠ 04 gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.
In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:
- die herkömmliche Transinformation zwischen $X$ und $W$:
$I(X;W) = H(X) - H(X \mid W)$ ,
- die bedingte Transinformation zwischen $X$ und $W$ bei gegebenem Festwert $Z = z$:
$I(X;W \mid Z=z) = H(X \mid Z=z) - H(X \mid W , Z=z)$,
- die bedingte Transinformation zwischen $X$ und $W$ bei gegebener Zufallsgröße $Z$:
$I(X;W \mid Z) = H(X \mid Z) - H(X \mid W Z)$.
Der Zusammenhang zwischen den beiden letzten Definitionen lautet:
$I(X;W \mid Z) = \sum\limits_{z \epsilon supp(P_Z)} P_Z(Z) . I(X; W \mid Z=z)$.
Hinwies: Die Aufgabe gehört zum Themengebiet von Kapitel 3.2.
Fragebogen
Musterlösung
Die folgende Grafik gilt für $Z = 1 \Rightarrow W = X + Y$. Unter den Voraussetzungen $P_X(X) = [1/2, 1/2]$ sowie $P_Y(Y) = [1/2, 1/2]$ ergeben sich somit die Verbundwahrscheinlichkeiten $P_{ XW|Z=1 }(X, W)$ entsprechend der rechten Grafik (graue Hinterlegung).
Damit gilt für die Transinformation unter der festen Bedingung $Z = 1$:
$$I(X;W \mid Z=1) = \sum\limits_{(x,w) \epsilon supp (P_{ XW } \mid Z=1)} P_{ XW \mid Z=1 }(x,w) . log_2 \frac{ P_{ XW \mid Z=1 }(x,w)}{ P_X(X) . P_{ W \mid Z=1 } (w)}=$$ $$= 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} = 0.5 (bit)$$ Der erste Term fasst die beiden horizontal schraffierten Felder in obiger Grafik zusammen, der zweite Term die vertikal schraffierten Felder. Letztere liefern wegen $log_2 (1) = 0$ keinen Beitrag.
2. Für $Z = 2$ gilt zwar '$W = \{4, 6, 8\}$, aber hinsichtlich der Wahrscheinlichkeitsfunktionen ändert sich gegenüber der Teilaufgabe (a) nichts. Demzufolge erhält man auch die gleiche bedingte Transinformation:
$I(X;W \mid Z=2) = I(X;W \mid Z=1) = 0.5 (bit)$
3. Es ist berücksichtigt, dass entsprechend den Teilaufgaben (a) und (b) die bedingten Transinformationen für gegebenes $Z = 1$ und gegebenes $Z = 2$ gleich sind. Damit ist $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße $Z = \{1, 2\}$ mit $P_Z(Z) = [p, 1 – p]$, unabhängig von p. Das Ergebnis gilt insbesondere auch für $p = 1/2$ und $p = 3/4$.
4. Die Verbundwahrscheinlichkeiten P_{ XW }(⋅) hängen auch von den $Z$–Wahrscheinlichkeiten $p$ und $1 – p$ ab. Für $Pr(Z = 1) = Pr(Z = 2) = 1/2$ ergibt sich das nachfolgend skizzierte Schema. Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:
5.
6.
7.