Difference between revisions of "Digital Signal Transmission/Parameters of Digital Channel Models"

From LNTwww
Line 164: Line 164:
 
:<math>{\rm Pr}(a = k) = {\rm Pr}(e_{\nu + 1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm} ... \hspace{0.15cm}\cap \hspace{0.15cm}\hspace{0.05cm}
 
:<math>{\rm Pr}(a = k) = {\rm Pr}(e_{\nu + 1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm} ... \hspace{0.15cm}\cap \hspace{0.15cm}\hspace{0.05cm}
 
  e_{\nu + k -1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm}e_{\nu + k} = 1 \hspace{0.1cm}| \hspace{0.1cm} e_{\nu } = 1)\hspace{0.05cm}.</math><br>
 
  e_{\nu + k -1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm}e_{\nu + k} = 1 \hspace{0.1cm}| \hspace{0.1cm} e_{\nu } = 1)\hspace{0.05cm}.</math><br>
 +
 +
== Fehlerabstand und Fehlerabstandsverteilung (2) ==
 +
<br>
 +
Im Buch &bdquo;Stochastische Signaltheorie&rdquo; finden Sie ebenfalls die Definition der [http://en.lntwww.de/Stochastische_Signaltheorie/Verteilungsfunktion_(VTF)#VTF_bei_kontinuierlichen_Zufallsgr.C3.B6.C3.9Fen_.281.29 Verteilungsfunktion] der diskreten Zufallsgröße <i>a</i>:
 +
 +
:<math>F_a(k) =  {\rm Pr}(a \le k) \hspace{0.05cm}.</math>
 +
 +
Diese Funktion ergibt sich aus der WDF <i>f<sub>a</sub></i>(<i>a</i>) durch Integration von 1 bis <i>k</i>. Sie kann Werte zwischen 0 und 1 (einschließlich dieser beiden Grenzen) annehmen und ist schwach monoton ansteigend.<br>
 +
 +
Im Zusammenhang mit den digitalen Kanalmodellen wird in der Literatur von dieser üblichen Definition abgewichen. Vielmehr gibt hier die Fehlerabstandsverteilung (FAV) die Wahrscheinlichkeit an, dass der Fehlerabstand <i>a</i> größer oder gleich <i>k</i> ist:
 +
 +
:<math>V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  {\rm Pr}(a = \kappa)\hspace{0.05cm}.</math>
 +
 +
Insbesondere gilt:
 +
 +
:<math>V_a(k = 1) = 1 \hspace{0.05cm},\hspace{0.2cm}\lim_{k \rightarrow \infty}V_a(k ) =
 +
0 \hspace{0.05cm}.</math>
 +
 +
Zwischen der monoton ansteigenden Funktion <i>F<sub>a</sub></i>(<i>k</i>) und der monoton abfallenden Funktion <i>V<sub>a</sub></i>(<i>k</i>) gilt folgender Zusammenhang:
 +
 +
:<math>F_a(k ) = 1-V_a(k +1)  \hspace{0.05cm}.</math>
 +
 +
{{Beispiel}}''':''' Die Grafik zeigt eine willkürliche diskrete Fehlerabstandsdichtefunktion <i>f<sub>a</sub></i>(<i>a</i>) und die daraus resultierenden <i>kumulativen Funktionen</i> <i>F<sub>a</sub></i>(<i>k</i>) = Pr(<i>a</i> &#8804; <i>k</i>) sowie <i>V<sub>a</sub></i>(<i>k</i>) = Pr(<i>a</i> &#8805; <i>k</i>) .<br>
 +
 +
[[File:P ID1826 Dig T 5 1 S5b version1.png|Diskrete Wahrscheinlichkeitsdichte und Verteilungsfunktionen|class=fit]]<br>
 +
 +
Beispielsweise ergibt sich für <i>k</i> = 2:
 +
 +
:<math>F_a( k =2 )  = {\rm Pr}(a = 1) + {\rm Pr}(a = 2)= 0.7 = 1-V_a(k = 3)
 +
\hspace{0.05cm}, </math>
 +
:<math> V_a(k =2 )  = 1 - {\rm Pr}(a = 1) = 0.6 = 1-F_a(k = 1)
 +
\hspace{0.05cm}.</math>
 +
 +
Für <i>k</i> = 4 erhält man folgende Resultate:
 +
 +
:<math>F_a(k = 4 )  =  {\rm Pr}(a \le 4) = 1
 +
\hspace{0.05cm}, </math>
 +
:<math> V_a(k = 4 )  =  {\rm Pr}(a \ge 4)= {\rm Pr}(a = 4) = 0.1
 +
\hspace{0.05cm}.</math>{{end}}<br>
 +
 +
  
  

Revision as of 16:47, 31 December 2016

Anwendung analoger Kanalmodelle


Für Untersuchungen von Nachrichtenübertragungssystemen sind geeignete Kanalmodelle von großer Wichtigkeit, weil diese

  • Voraussetzung für eine Systemsimulation und –optimierung sind, sowie
  • gleichbleibende und rekonstruierbare Randbedingungen schaffen.

Für die Digitalsignalübertragung gibt es sowohl analoge als auch digitale Kanalmodelle: Ein analoges Kanalmodell muss zwar den Übertragungskanal nicht in allen physikalischen Einzelheiten wiedergeben, sollte jedoch dessen Übertragungsverhalten inklusive der dominanten Störgrößen funktionell ausreichend genau beschreiben. Meist muss ein Kompromiss zwischen mathematischer Handhabbarkeit und dem Bezug zur Realität gefunden werden.

: Die Grafik zeigt ein analoges Kanalmodell innerhalb eines digitalen Übertragungssystems. Dieses beinhaltet den Kanalfrequenzgang HK(f) zur Beschreibung der linearen Verzerrungen sowie ein additives Störsignal n(t), charakterisiert durch die Wahrscheinlichkeitsdichtefunktion fn(n) und das Leistungsdichtespektrum Φn(f).

Analoges Kanalmodell innerhalb eines digitalen Übertragungssystems

Ein Sonderfall dieses Modells ist der so genannte AWGN–Kanal (Additive White Gaussian Noise) mit den Systemeigenschaften

\[H_{\rm K}(f) = 1\hspace{0.05cm},\hspace{0.2cm}{\it \Phi}_{n}(f) = {\rm const.}\hspace{0.05cm},\hspace{0.2cm} {f}_{n}(n) = \frac{1}{\sqrt{2 \pi} \cdot \sigma} \cdot {\rm e}^{-n^2\hspace{-0.05cm}/(2 \sigma^2)}\hspace{0.05cm}.\]

Dieses einfache Modell eignet sich zum Beispiel zur Beschreibung eines Funkkanals mit zeitinvariantem Verhalten, wobei das Kanalmodell dahingehend abstrahiert ist, dass

  • der eigentlich bandpassartige Kanal im äquivalenten Tiefpassbereich beschrieben wird, und
  • die vom Frequenzband und der Übertragungsweglänge abhängige Dämpfung mit der Varianz σ2 des Rauschsignals n(t) verrechnet wird.

Zur Berücksichtigung zeitvarianter Eigenschaften muss man andere Modelle wie Rayleigh–, Rice– und Lognormal–Fading verwenden, die im Buch „Mobile Kommunikation” beschrieben werden.

Bei leitungsgebundenen Übertragungssystemen ist insbesondere der spezifische Frequenzgang des Übertragungsmediums entsprechend den Angaben in Kapitel 4.2 (Koaxialkabel) und Kapitel 4.3 (Zweidrahtleitung) des Buches „Lineare zeitinvariante Systeme” zu berücksichtigen, aber auch, dass aufgrund von Fremdstörungen (Nebensprechen, elektromagnetische Felder, usw.) nicht mehr von Weißem Rauschen ausgegangen werden kann.

Bei optischen Systemen muss zudem das multiplikativ wirkende, also signalabhängige Schrotrauschen geeignet in das analoge Kanalmodell eingearbeitet werden.


Definition digitaler Kanalmodelle (1)


Ein analoges Kanalmodell zeichnet sich durch analoge Eingangs– und Ausgangsgrößen aus. Dagegen sind bei einem digitalen Kanalmodell (manchmal auch als „diskret” bezeichnet) sowohl der Eingang als auch der Ausgang zeit– und wertdiskret. Im Folgenden seien dies die Quellensymbolfolgeqν〉 ∈ {L, H} und die Sinkensymbolfolge 〈υν〉 ∈ {L, H}. Die Laufvariable ν kann Werte zwischen 1 und N annehmen.

Digitales Kanalmodell und beispielhafte Folgen

Wie ein Vergleich mit dem Blockschaltbild auf der letzten Seite zeigt, ist der Digitale Kanal ein vereinfachendes Modell des analogen Übertragungskanals einschließlich der technischen Sende– und Empfangseinrichtungen. Vereinfachend deshalb, weil dieses Modell sich lediglich auf die auftretenden Übertragungsfehler bezieht, dargestellt durch die Fehlerfolge 〈eν〉 mit

\[e_{\nu} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}\upsilon_\nu \ne q_\nu \hspace{0.05cm}, \\ {\rm falls}\hspace{0.15cm} \upsilon_\nu = q_\nu \hspace{0.05cm}.\\ \end{array}\]

Während L und H die möglichen Symbole bezeichnen, die hier für Low und High stehen, ist eν ∈ {0, 1} ein reeller Zahlenwert. Oft werden die Symbole auch als qν ∈ {0, 1} und υν ∈ {0, 1}definiert. Um Verwechslungen zu vermeiden, haben wir hier die etwas ungewöhnliche Nomenklatur verwendet.

Die in der Grafik angegebene Fehlerfolge 〈eν

  • ergibt sich durch den Vergleich der beiden Binärfolgen 〈qν〉 und 〈υν〉,
  • beinhaltet nur Informationen über die Abfolge der Übertragungsfehler und damit im Allgemeinen weniger Information als ein analoges Kanalmodell,
  • wird zweckmäßigerweise durch einen Zufallsprozess mit nur wenigen Parametern angenähert.

Die Fehlerfolge 〈eν〉 erlaubt Aussagen über die Fehlerstatistik, zum Beispiel ob es sich um so genannte

  • statistisch unabhängige Fehler, oder
  • Bündelfehler

handelt. Das folgende Beispiel soll diese beiden Fehlerarten verdeutlichen.

Definition digitaler Kanalmodelle (2)


: In der folgenden Grafik sehen wir in der Mitte das BMP–Bild „Weiß” mit 300 x 200 Pixeln. Das linke Bild zeigt die Verfälschung mit statistisch unabhängigen Fehlern (BSC–Modell), während das rechte Bild einen Bündelfehlerkanal (Gilbert–Elliott–Modell) verdeutlicht.

BMP–Bild „Weiß” mit unabhängigen Fehlern bzw. Bündelfehlern

Anzumerken ist, dass BMP–Grafiken stets zeilenweise abgespeichert werden, was im rechten Bild zu erkennen ist. Die mittlere Fehlerwahrscheinlichkeit beträgt in beiden Fällen pM = 2.5%, das heißt, dass im Mittel jedes 40. Pixel verfälscht (hier: weiß ⇒ schwarz) ist.


Beispielhafte Anwendung von digitalen Kanalmodellen


Digitale Kanalmodelle finden vorzugsweise Anwendung bei einer kaskadierten Übertragung, wie in der folgenden Grafik dargestellt.

Modell eines Übertragungssystems mit Coder/Decoder

Man erkennt aus dieser Darstellung:

  • Das innere Übertragungssystem – bestehend aus Modulator, Analogkanal, Störung, Demodulator, Empfangsfilter, Entscheider und Taktrückgewinnung – ist im blau markierten Block „Digitaler Kanal” zusammengefasst.
  • Dieser innere Block wird auschließlich durch seine Fehlerfolge 〈e'ν〉 charakterisiert, die sich auf die Symbolfolgen 〈cν〉 und 〈wν〉 bezieht. Es ist offensichtlich, dass dieses digitale Kanalmodell weniger Informationen liefert als ein detailliertes Analogmodell unter Berücksichtigung aller Komponenten.
  • Dagegen bezieht sich die „äußere” Fehlerfolge 〈eν〉 auf die Quellensymbolfolge 〈qν〉 sowie die Sinkensymbolfolge 〈υν〉 und damit auf das Gesamtsystem einschließlich der spezifischen Codierung und des empfängerseitigen Decoders.
  • Der Vergleich der beiden Fehlerfolgen mit und ohne Berücksichtigung von Coder/Decoder erlaubt Rückschlüsse auf die Effizienz des zugrundeliegenden Codierverfahrens. Dieses ist dann und nur dann sinnvoll, wenn der äußere Komparator im Mittel weniger Fehler anzeigt als der innere.

Fehlerfolge und Fehlerkorrelationsfunktion


Das Übertragungsverhalten eines Binärsystems wird durch die Fehlerfolge 〈eν〉 vollständig beschrieben:

\[e_{\nu} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}\upsilon_\nu \ne q_\nu \hspace{0.05cm}, \\ {\rm falls}\hspace{0.15cm} \upsilon_\nu = q_\nu \hspace{0.05cm}.\\ \end{array}\]

Hieraus lässt sich die (mittlere) Bitfehlerwahrscheinlichkeit wie folgt berechnen:

\[p_{\rm M} = {\rm E}[e] = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{\nu = 1}^{N}e_{\nu}\hspace{0.05cm}.\]

Vorausgesetzt ist hierbei, dass der die Fehlentscheidungen erzeugende Zufallsprozess stationär und ergodisch ist, so dass man die Fehlerfolge 〈eν〉 formal auch durch die Zufallsgröße e ∈ {0, 1} vollständig beschreiben kann. Der Übergang von der Zeit– zur Scharmittelung ist also zulässig.

Hinweis: In allen anderen Büchern von LNTwww wird die mittlere Bitfehlerwahrscheinlichkeit mit pB bezeichnet. Zur Vermeidung von Verwechslungen im Zusammenhang mit dem Gilbert–Elliott–Modell ist diese hier vorgenommene Umbenennung unvermeidbar und wir sprechen nachfolgend nicht mehr von der Bitfehlerwahrscheinlichkeit, sondern nur noch von der mittleren Fehlerwahrscheinlichkeit pM.

Eine wichtige Beschreibungsgröße der digitalen Kanalmodelle ist die Fehlerkorrelationsfunktion – abgekürzt FKF – gemäß folgender Definition:

\[\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu + k}] = \overline{e_{\nu} \cdot e_{\nu + k}}\hspace{0.05cm}.\]

Für diese gilt:

  • φe(k) gibt die (zeitdiskrete) Autokorrelationsfunktion der ebenfalls zeitdiskreten Zufallsgröße e an. Die überstreichende Linie in der rechten Gleichung kennzeichnet die Zeitmittelung.
  • Der Fehlerkorrelationswert φe(k) liefert statistische Aussagen bezüglich zwei um k auseinander liegende Folgenelemente, zum Beispiel über eν und eν+k. Die dazwischen liegenden Elemente eν+1, ... , eν+k–1 beeinflussen den φe(k)–Wert nicht.
  • Bei stationren Folgen gilt unabhängig von der der Fehlerstatistik wegen e ∈ {0, 1} stets:
\[\varphi_{e}(k = 0) = {\rm E}[e_{\nu} \cdot e_{\nu}] = {\rm E}[e^2]= {\rm E}[e]= {\rm Pr}(e = 1)= p_{\rm M}\hspace{0.05cm},\]
\[\varphi_{e}(k \rightarrow \infty) = {\rm E}[e_{\nu}] \cdot {\rm E}[e_{\nu + k}] = p_{\rm M}^2\hspace{0.05cm}.\]
  • Die Fehlerkorrelationsfunktion ist eine zumindest schwach abfallende Funktion. Je langsamer der Abfall der FKF–Werte erfolgt, desto länger ist das Gedächtnis des Kanals und um so weiter reichen die statistischen Bindungen der Fehlerfolge.

: Bei einer Binärübertragung werden 100 der insgesamt N = 105 übertragenen Binärsymbole verfälscht, so dass die Fehlerfolge 〈eν〉 aus 100 Einsen und 99900 Nullen besteht. Die mittlere Fehlerwahrscheinlichkeit pM = φe(0) beträgt somit 10–3, während die Fehlerkorrelationsfunktion φe(k) bei 10–6 (für k = 0) beginnt und für sehr große k–Werte gegen 10–6 tendiert. Über den tatsächlichen Verlauf von φe(k) ist mit den hier gemachten Angaben keine Aussage möglich.


Fehlerabstand und Fehlerabstandsverteilung (1)


Jede in der Fehlerfolge 〈eν〉 enthaltene Information über das Übertragungsverhalten des digitalen Kanals ist auch in der Folge 〈an〉 der Fehlerabstände enthaltenen. Als Fehlerabstand bezeichnet man dabei die Anzahl der zwischen zwei Kanalfehlern richtig übertragenen Symbole plus 1.

Zur Definition des Fehlerabstands

Da die Folgen 〈eν〉 und 〈aν'〉 nicht synchron laufen, verwenden wir unterschiedliche Indizes (ν bzw. n).

Die Grafik verdeutlicht diese Definition. Man erkennt:

  • Da das erste Symbol richtig übertragen wurde, ist a1 = 2.
  • a2 = 4 sagt aus, dass zwischen den beiden ersten Fehlern drei Symbole richtig übertragen wurden.
  • Folgen zwei Fehler direkt aufeinander, so ist der Fehlerabstand wie a3 in obiger Grafik gleich 1.
  • Das Ereignis „a = k” bedeutet gleichzeitig k – 1 fehlerfreie Symbole zwischen zwei Fehlern. Ist zum Zeitpunkt ν ein Fehler aufgetreten, so folgt der nächste Fehler genau zum Zeitpunkt ν + k.
  • Der Wertevorrat der Zufallsgröße a ist die Menge der natürlichen Zahlen im Gegensatz zur binären Zufallsgröße e:
\[a \in \{ 1, 2, 3, ... \}\hspace{0.05cm}, \hspace{0.2cm}e \in \{ 0, 1 \}\hspace{0.05cm}.\]
  • Die mittlere Fehlerwahrscheinlichkeit lässt sich aus beiden Zufallsgrößen ermitteln:
\[{\rm E}[e] = {\rm Pr}(e = 1) =p_{\rm M}\hspace{0.05cm}, \]
\[ {\rm E}[a] = \sum_{k = 1}^{\infty} k \cdot {\rm Pr}(a = k) = {1}/{p_{\rm M}}\hspace{0.05cm}.\]

In obigem Beispiel sind 16 der insgesamt N = 40 Symbole verfälscht  ⇒  pM = 0.4. Der Erwartungswert der Fehlerabstände ergibt entsprechend

\[{\rm E}[a] = 1 \cdot {4}/{16}+ 2 \cdot {5}/{16}+ 3 \cdot {4}/{16}+4 \cdot {1}/{16}+5 \cdot {2}/{16}= 2.5 = {1}/{p_{\rm M}}\hspace{0.05cm}.\]

Die Wahrscheinlichkeitsdichtefunktion (WDF) der diskreten Zufallsgröße a ∈ {1, 2, 3, ...} setzt sich entsprechend Kapitel 3.1 im Buch „Stochastische Signaltheorie” aus einer (unendlichen) Summe von Diracfunktionen zusammen:

\[f_a(a) = \sum_{k = 1}^{\infty} {\rm Pr}(a = k) \cdot \delta (a-k)\hspace{0.05cm}.\]

Wir bezeichnen diese spezielle WDF als Fehlerabstandsdichtefunktion. Die Wahrscheinlichkeit, dass der Fehlerabstand a exakt gleich k ist, lässt sich anhand der Fehlerfolge durch die folgende bedingte Wahrscheinlichkeit ausdrücken:

\[{\rm Pr}(a = k) = {\rm Pr}(e_{\nu + 1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm} ... \hspace{0.15cm}\cap \hspace{0.15cm}\hspace{0.05cm} e_{\nu + k -1} = 0 \hspace{0.15cm}\cap \hspace{0.15cm}e_{\nu + k} = 1 \hspace{0.1cm}| \hspace{0.1cm} e_{\nu } = 1)\hspace{0.05cm}.\]

Fehlerabstand und Fehlerabstandsverteilung (2)


Im Buch „Stochastische Signaltheorie” finden Sie ebenfalls die Definition der Verteilungsfunktion der diskreten Zufallsgröße a:

\[F_a(k) = {\rm Pr}(a \le k) \hspace{0.05cm}.\]

Diese Funktion ergibt sich aus der WDF fa(a) durch Integration von 1 bis k. Sie kann Werte zwischen 0 und 1 (einschließlich dieser beiden Grenzen) annehmen und ist schwach monoton ansteigend.

Im Zusammenhang mit den digitalen Kanalmodellen wird in der Literatur von dieser üblichen Definition abgewichen. Vielmehr gibt hier die Fehlerabstandsverteilung (FAV) die Wahrscheinlichkeit an, dass der Fehlerabstand a größer oder gleich k ist:

\[V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa)\hspace{0.05cm}.\]

Insbesondere gilt:

\[V_a(k = 1) = 1 \hspace{0.05cm},\hspace{0.2cm}\lim_{k \rightarrow \infty}V_a(k ) = 0 \hspace{0.05cm}.\]

Zwischen der monoton ansteigenden Funktion Fa(k) und der monoton abfallenden Funktion Va(k) gilt folgender Zusammenhang:

\[F_a(k ) = 1-V_a(k +1) \hspace{0.05cm}.\]

: Die Grafik zeigt eine willkürliche diskrete Fehlerabstandsdichtefunktion fa(a) und die daraus resultierenden kumulativen Funktionen Fa(k) = Pr(ak) sowie Va(k) = Pr(ak) .

Diskrete Wahrscheinlichkeitsdichte und Verteilungsfunktionen

Beispielsweise ergibt sich für k = 2:

\[F_a( k =2 ) = {\rm Pr}(a = 1) + {\rm Pr}(a = 2)= 0.7 = 1-V_a(k = 3) \hspace{0.05cm}, \] \[ V_a(k =2 ) = 1 - {\rm Pr}(a = 1) = 0.6 = 1-F_a(k = 1) \hspace{0.05cm}.\]

Für k = 4 erhält man folgende Resultate:

\[F_a(k = 4 ) = {\rm Pr}(a \le 4) = 1 \hspace{0.05cm}, \]

\[ V_a(k = 4 ) = {\rm Pr}(a \ge 4)= {\rm Pr}(a = 4) = 0.1 \hspace{0.05cm}.\]