Difference between revisions of "Aufgaben:Exercise 2.8: Asymmetrical Channel"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Hüllkurvendemodulation }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |t…“)
 
Line 3: Line 3:
 
}}
 
}}
  
[[File:|right|]]
+
[[File:P_ID1038__Mod_A_2_8.png|right|]]
 +
Ein cosinusförmiges Quellensignal $q(t)$ mit der Amplitude $A_N$ und der Frequenz $f_N$ wird ZSB–amplitudenmoduliert, so dass für das modulierte Signal gilt:
 +
$$ s(t) = ( q(t) + A_{\rm T}) \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t ) \hspace{0.05cm}.$$
 +
Der Übertragungskanal weist lineare Verzerrungen auf. Während sowohl das untere Seitenband als auch der Träger unverfälscht übertragen werden, wird das obere Seitenband (bei der OSB-Frequenz $f_T + f_N$) mit dem Dämpfungsfaktor $α_O = 0.25$ gewichtet.
  
 +
Die Grafik zeigt die Ortskurve, also die Darstellung des äquivalenten Tiefpass–Signals $r_TP(t)$ in der komplexen Ebene. Wertet man das Signal $r(t)$ mit einem idealen Hüllkurvendemodulator aus, so erhält man ein Sinkensignal $υ(t)$, das wie folgt angenähert werden kann:
 +
$$v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )- ...$$
 +
Für diese Messung wurde die Nachrichtenfrequenz $f_N = 2 kHz$ benutzt.
 +
 +
In der Teilaufgabe g) soll das Signal–zu–Stör–Leistungsverhältnis (SNR) wie folgt berechnet werden:
 +
$$ \rho_{v } = \frac{P_{v 1}}{P_{\varepsilon }} \hspace{0.05cm}.$$
 +
Hierbei bezeichnen $P_{υ1} = α^2 · P_q$ und $P_ε$ die „Leistungen” der beiden Signale:
 +
$$ v_1(t)  =  2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},$$
 +
$$ \varepsilon(t)  =  v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.$$
 +
 +
 +
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://en.lntwww.de/Modulationsverfahren/H%C3%BCllkurvendemodulation Kapitel 2.3].
  
 
===Fragebogen===
 
===Fragebogen===

Revision as of 19:11, 1 January 2017

P ID1038 Mod A 2 8.png

Ein cosinusförmiges Quellensignal $q(t)$ mit der Amplitude $A_N$ und der Frequenz $f_N$ wird ZSB–amplitudenmoduliert, so dass für das modulierte Signal gilt: $$ s(t) = ( q(t) + A_{\rm T}) \cdot \cos(2 \pi \cdot f_{\rm T} \cdot t ) \hspace{0.05cm}.$$ Der Übertragungskanal weist lineare Verzerrungen auf. Während sowohl das untere Seitenband als auch der Träger unverfälscht übertragen werden, wird das obere Seitenband (bei der OSB-Frequenz $f_T + f_N$) mit dem Dämpfungsfaktor $α_O = 0.25$ gewichtet.

Die Grafik zeigt die Ortskurve, also die Darstellung des äquivalenten Tiefpass–Signals $r_TP(t)$ in der komplexen Ebene. Wertet man das Signal $r(t)$ mit einem idealen Hüllkurvendemodulator aus, so erhält man ein Sinkensignal $υ(t)$, das wie folgt angenähert werden kann: $$v(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t ) -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t )- ...$$ Für diese Messung wurde die Nachrichtenfrequenz $f_N = 2 kHz$ benutzt.

In der Teilaufgabe g) soll das Signal–zu–Stör–Leistungsverhältnis (SNR) wie folgt berechnet werden: $$ \rho_{v } = \frac{P_{v 1}}{P_{\varepsilon }} \hspace{0.05cm}.$$ Hierbei bezeichnen $P_{υ1} = α^2 · P_q$ und $P_ε$ die „Leistungen” der beiden Signale: $$ v_1(t) = 2.424 \,{\rm V} \cdot \cos(\omega_{\rm N} \cdot t )\hspace{0.05cm},$$ $$ \varepsilon(t) = v(t) - v_1(t) \approx -0.148 \,{\rm V} \cdot \cos(2\omega_{\rm N} \cdot t )+ 0.056 \,{\rm V} \cdot \cos(3\omega_{\rm N} \cdot t ) \hspace{0.05cm}.$$


Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 2.3.

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.