Difference between revisions of "Aufgaben:Exercise 5.4Z: OVSF Codes"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Spreizfolgen für CDMA }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |ty…“) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:|right|]] | + | [[File:P_ID1891__Mod_Z_5_4.png|right|]] |
+ | Die Spreizcodes für UMTS sollen | ||
+ | :* alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden, | ||
+ | :* zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen. | ||
+ | Ein Beispiel hierfür sind die sog. '''Codes mit variablem Spreizfaktor''' (englisch: ''Orthogonal Variable Spreading'' Factor, OVSF), die Spreizcodes der Längen von J = 4 bis J = 512 bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code C zwei neue Codes (+C +C) und (+C –C). | ||
+ | Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel J = 4. Nummeriert man die Spreizfolgen von 0 bis J –1 durch, so ergeben sich hier die Spreizfolgen | ||
+ | $$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ | ||
+ | $$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ | ||
+ | Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor J = 8 die Spreizfolgen 〈$c_ν{(0)}$〉, ... , 〈$c_ν{(7)}$〉. | ||
+ | |||
+ | Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor J = 4 verwendet werden oder die drei gelb hinterlegten Codes – einmal mit J = 2 und zweimal mit J = 4. | ||
+ | |||
+ | '''Hinweis:''' Die Aufgabe bezieht sich auf dem [http://en.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA#Codes_mit_variablem_Spreizfaktor_.28OVSF.E2.80.93Code.29 Codes mit variablem Spreizfaktor (OVSF–Code)] von [http://en.lntwww.de/Modulationsverfahren/Spreizfolgen_f%C3%BCr_CDMA Kapitel 5.3]. | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Konstruieren Sie das Baumdiagramm für J = 8. Welche OVSF–Codes ergeben sich daraus? |
|type="[]"} | |type="[]"} | ||
− | - | + | + 〈$c_ν{(1)}$〉 = +1 +1 +1 +1 –1 –1 –1 –1, |
− | + | + | - 〈$c_ν{(3)}$〉 = +1 +1 –1 –1 +1 +1 –1 –1, |
+ | + 〈$c_ν{(5)}$〉 = +1 –1 +1 –1 –1 +1 –1 +1, | ||
+ | + 〈$c_ν{(7)}$〉 = +1 –1 –1 +1 –1 +1 +1 –1. | ||
− | { | + | {Wieviele UMTS–Teilnehmer können mit J = 8 maximal bedient werden? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $K_{max}$ = { 8 3% } |
− | |||
+ | {Wieviele Teilnehmer können versorgt werden, wenn drei dieser Teilnehmer einen Spreizcode mit J = 4 verwenden sollen? | ||
+ | |type="{}"} | ||
+ | $K$ = { 5 3% } | ||
+ | {Gehen Sie von einer Baumstruktur für J = 32 aus. Ist folgende Zuweisung machbar: Zweimal J = 4, einmal J = 8, zweimal J = 16 und achtmal J = 32? | ||
+ | |type="[]"} | ||
+ | + ja | ||
+ | - nein | ||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Die folgende Grafik zeigt die OVSF–Baumstruktur für J = 8 Nutzer. Daraus ist ersichtlich, dass die Lösungsvorschläge 1, 3 und 4 zutreffen, nicht jedoch der zweite. |
− | '''2.''' | + | |
− | '''3.''' | + | [[File:P_ID1892__Mod_Z_5_4a.png]] |
− | '''4.''' | + | |
− | + | '''2.''' Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können $K_{max} = 8$ Teilnehmer versorgt werden. | |
− | + | ||
− | + | '''3.''' Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ K = 5. | |
+ | |||
+ | '''4.''' Wir bezeichnen mit | ||
+ | :* $K_4 = 2$ die Anzahl der Spreizfolgen mit J = 4, | ||
+ | :* $K_8 = 1$ die Anzahl der Spreizfolgen mit J = 8, | ||
+ | :* $K_16 = 2$ die Anzahl der Spreizfolgen mit J = 16, | ||
+ | :* $K_32 = 8$ die Anzahl der Spreizfolgen mit J = 32, | ||
+ | |||
+ | Dann muss folgende Bedingung erfüllt sein: | ||
+ | $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32$$ | ||
+ | $$\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ | ||
+ | Wegen 2 · 8 + 1 · 4 + 2 · 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA. Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort. | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 17:34, 7 January 2017
Die Spreizcodes für UMTS sollen
- alle zueinander orthogonal sein, um eine gegenseitige Beeinflussung der Teilnehmer zu vermeiden,
- zusätzlich eine flexible Realisierung unterschiedlicher Spreizfaktoren J ermöglichen.
Ein Beispiel hierfür sind die sog. Codes mit variablem Spreizfaktor (englisch: Orthogonal Variable Spreading Factor, OVSF), die Spreizcodes der Längen von J = 4 bis J = 512 bereitstellen. Diese können, wie in der Grafik zu sehen ist, mit Hilfe eines Codebaums erstellt werden. Dabei entstehen bei jeder Verzweigung aus einem Code C zwei neue Codes (+C +C) und (+C –C).
Die Grafik verdeutlicht das hier angegebene Prinzip am Beispiel J = 4. Nummeriert man die Spreizfolgen von 0 bis J –1 durch, so ergeben sich hier die Spreizfolgen $$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ $$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$ Entsprechend dieser Nomenklatur gibt es für den Spreizfaktor J = 8 die Spreizfolgen 〈$c_ν{(0)}$〉, ... , 〈$c_ν{(7)}$〉.
Anzumerken ist, dass kein Vorgänger und Nachfolger eines Codes für einen anderen Teilnehmer benutzt werden darf. Im Beispiel könnten also vier Spreizcodes mit Spreizfaktor J = 4 verwendet werden oder die drei gelb hinterlegten Codes – einmal mit J = 2 und zweimal mit J = 4.
Hinweis: Die Aufgabe bezieht sich auf dem Codes mit variablem Spreizfaktor (OVSF–Code) von Kapitel 5.3.
Fragebogen
Musterlösung
2. Wird jedem Nutzer ein Spreizcode mit J = 8 zugewiesen, so können $K_{max} = 8$ Teilnehmer versorgt werden.
3. Wenn drei Teilnehmer mit J = 4 versorgt werden, können nur mehr zwei Teilnehmer durch eine Spreizfolge mit J = 8 bedient werden (siehe beispielhafte gelbe Hinterlegung in obiger Grafik) ⇒ K = 5.
4. Wir bezeichnen mit
- $K_4 = 2$ die Anzahl der Spreizfolgen mit J = 4,
- $K_8 = 1$ die Anzahl der Spreizfolgen mit J = 8,
- $K_16 = 2$ die Anzahl der Spreizfolgen mit J = 16,
- $K_32 = 8$ die Anzahl der Spreizfolgen mit J = 32,
Dann muss folgende Bedingung erfüllt sein: $$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32$$ $$\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$ Wegen 2 · 8 + 1 · 4 + 2 · 2 + 8 = 32 ist die gewünschte Belegung gerade noch erlaubt ⇒ Antwort JA. Die zweimalige Bereitstellung des Spreizgrads J = 4 blockiert zum Beispiel die obere Hälfte des Baums, nach der Versorgung der einen Spreizung mit J = 8, bleiben auf der J = 8–Ebene noch 3 der 8 Äste zu belegen, usw. und so fort.