Exercise 2.5: "Binomial" or "Poisson"?

From LNTwww
Revision as of 15:22, 5 March 2017 by Guenter (talk | contribs)

Binomial- oder poissonverteilt?

Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen) annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.

Weiterhin ist bekannt, dass

  • eine der Größen binomialverteilt ist, und
  • die andere eine Poissonverteilung beschreibt.


Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt ist.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Poissonverteilung.
  • Bezug genommen wird aber auch auf das vorherige Kapitel Binomialverteilung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Ermitteln Sie aus den Wahrscheinlichkeiten, den Mittelwerten und den Streuungen, ob $z_1$ oder $z_2$ poissonverteilt ist.

$z_1$ ist poissonverteilt und $z_2$ ist binomialverteilt.
$z_1$ ist binomialverteilt und $z_2$ ist poissonverteilt.

2

Welche Rate $\lambda$ weist die Poissonverteilung auf?

$\lambda \ =$

3

Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist?

${\rm Pr}(z_{Poisson} = 6) \ =$

${\rm Pr}(z_{Poisson} > 6) \ =$

4

Betrachten Sie nun die Binomialverteilung. Geben Sie deren charakteristische Wahrscheinlichkeit $p$ an.

$p \ =$

5

Wie groß ist damit der Parameter $I$ der Binomialverteilung? Überprüfen Sie Ihr Ergebnis anhand der Wahrscheinlichkeit $\rm Pr(0)$.

$I \ =$


Musterlösung

(1)  Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich. Die Zufallsgröße $z_1$ erfüllt diese Bedingung  ⇒  Lösungsvorschlag 1.

(2)  Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten.

(3)  Die entsprechende Wahrscheinlichkeit lautet: $$\rm Pr(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{=0.012}.$$

Die Wahrscheinlichkeit Pr(z1 > 6) ergibt sich zu 1 – Pr(0) – Pr(1) – ... – Pr(6). Es ergibt sich der Zahlenwert Pr(z1 > 6) ≈ 0.004.

(4)  Für die Varianz der Binomialverteilung gilt: $$\sigma^{\rm 2}=\it I\cdot p\cdot (\rm 1-\it p)=\it m_{\rm 1}\cdot (\rm 1-\it p).$$

Die charakteristische Wahrscheinlichkeit der Binomialverteilung ergibt sich damit aus der Varianz <nobr>1.0952 = 1.2</nobr> und dem Mittelwert 2 entsprechend der Gleichung:

$$ 1- p = \frac{\sigma^{2}}{m_1}= \frac{1.2}{2} = 0.6\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0.4}.$$

(5)  Aus dem Mittelwert m1 = 2 folgt weiterhin I = 5. Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten: $$\rm Pr(z_2 = 0)=\left({5 \atop {0}}\right)\cdot \it p^{\rm 0}\cdot (\rm 1 -\it p)^{\rm 5-0}=\rm 0.6^5=0.078.$$

Das bedeutet: Das Ergebnis ist richtig.