Exercise 4.2Z: Mixed Random Variables
Man spricht von einer gemischten Zufallsgröße, wenn die Zufallsgröße neben einem kontinuierlichen Anteil auch noch diskrete Anteile beinhaltet.
Die Zufallsgröße Y mit der Verteilungsfunktion FY(y) gemäß der unteren Skizze besitzt beispielsweise sowohl einen kontinuierlichen als auch einen diskreten Anteil. Die Wahrscheinlichkeitsdichtefunktion fY(y) erhält man aus FY(y) durch Differentiation. Aus dem Sprung bei y = 1 in der Verteilungsfunktion (VTF) wird somit ein „Dirac” in der Wahrscheinlichkeitsdichtefunktion (WDF).
In der Teilaufgabe (d) soll die differentielle Entropie h(Y) der Zufallsgröße Y ermittelt werden (in bit), wobei von folgender Gleichung auszugehen ist: $$h(Y) = \hspace{0.1cm} - \hspace{-0.45cm} \int\limits_{{\rm supp}\hspace{0.03cm}(\hspace{-0.03cm}f_Y)} \hspace{-0.35cm} f_Y(y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_Y(y) ] \hspace{0.1cm}{\rm d}y \hspace{0.05cm}.$$ In der Teilaufgabe (b) ist die differentielle Entropie h(X) der Zufallsgröße X zu berechnen, deren WDF fX(x) oben skizziert ist. Führt man einen geeigneten Grenzübergang durch, so wird auch aus der Zufallsgröße X eine gemischte Zufallsgröße.
Hinweis: Die Aufgabe gehört zum Kapitel 4.1 des vorliegenden Buches. Weitere Informationen zu gemischten Zufallsgrößen finden Sie im Kapitel 3.2 des Buches „Stochastische Signaltheorie”.
Fragebogen
Musterlösung
b) Die differentielle Entropie (in „bit”) ist wie folgt gegeben: $$h(X) = \hspace{0.1cm} \hspace{-0.45cm} \int\limits_{{\rm supp}(f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{f_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.$$ Wir unterteilen nun das Integral in drei Teilintegrale: $$h(X) \hspace{-0.15cm} = \hspace{-0.15cm} \hspace{-0.25cm} \int\limits_{0}^{1-\varepsilon/2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x + \hspace{-0.25cm}\int\limits_{1+\varepsilon/2}^{2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x $$ $$\ + \hspace{-0.15cm}\hspace{-0.25cm}\int\limits_{1-\varepsilon/2}^{1+\varepsilon/2} \hspace{-0.15cm} [0.5/\varepsilon + 0.25] \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.5/\varepsilon + 0.25} \hspace{0.1cm}{\rm d}x $$ $$=\ \hspace{-0.15cm} 2 \cdot 0.25 \cdot 2 \cdot (2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25) \hspace{0.05cm}.$$ Insbesondere erhält man
- für ε = 0.1:
$$h(X) =1.9 - 0.525 \cdot {\rm log}_2 \hspace{0.1cm}(5.25) = 1.9 - 1.256 \hspace{0.15cm}\underline{= 0.644\,{\rm bit}} \hspace{0.05cm},$$
- für ε = 0.01:
$$h(X) =1.99 - 0.5025 \cdot {\rm log}_2 \hspace{0.1cm}(50.25)= 1.99 - 2.84 \hspace{0.15cm}\underline{= -0.850\,{\rm bit}} \hspace{0.05cm}$$
- für ε = 0.001:
$$h(X) =1.999 - 0.50025 \cdot {\rm log}_2 \hspace{0.1cm}(500.25) = 1.999 - 8.967 \hspace{0.15cm}\underline{= -6.968\,{\rm bit}} \hspace{0.05cm}.$$ c) Alle Lösungsvorschläge sind hier zutreffend. Nach dem Grenzübergang ε → 0 erhält man für die differentielle Entropie $$h(X) \hspace{-0.15cm} = \hspace{-0.15cm} \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0} \hspace{0.1cm}[(2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25)]$$ $$ = \ \hspace{-0.15cm} 2\,{\rm bit} - 0.5 \cdot \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}{\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} - \infty \hspace{0.05cm}.$$ Die Wahrscheinlichkeitsdichtefunktion (WDF) ergibt sich in diesem Fall zu $$f_X(x) = \left\{ \begin{array}{c} 0.25 + 0.5 \cdot \delta (x-1) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 2, \\ {\rm sonst} \\ \end{array} \hspace{0.05cm}.$$ Es handelt sich demzufolge um eine „gemischte” Zufallsgröße mit
- einem stochastischen, gleichverteilten Anteil zwischen 0 ≤ x ≤ 2, und
- einem diskreten Anteil bei x = 1 mit der Wahrscheinlichkeit 0.5.
Die Grafik zeigt links die WDF fX(x) und rechts die Verteilungsfunktion (kurz VTF) FX(x). 4. 5. 6. 7.