Exercise 4.09Z: Periodic ACF

From LNTwww
Revision as of 14:43, 3 January 2018 by Guenter (talk | contribs) (Guenter verschob die Seite 4.09Z Periodische AKF nach Aufgabe 4.09Z: Periodische AKF)

Mehrstufiges Rechtecksignal

Wir betrachten in dieser Aufgabe einen periodischen und gleichzeitig ergodischen stochastischen Prozess $\{x_i(t)\}$, der durch die dargestellte Musterfunktion $x(t)$ vollständig charakterisiert ist.

Weitere Mustersignale des Zufallsprozesses $\{x_i(t)\}$ erhält man durch Verschiebung um unterschiedlich große Verzögerungen $\tau_i$, wobei $\tau_i$ als gleichverteilt zwischen $0$ und der Periodendauer $T_0$ angenommen wird.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Ermitteln Sie die Periodendauer $T_0$, normiert auf die in der Skizze definierte Zeitdauer $T$.

$T_0/T \ =$

2

Wie groß ist der Gleichsignalanteil (lineare Mittelwert) $m_x$ des beschriebenen Prozesses $\{x_i(t)\}$?

$m_x \ =$

$\ \rm V$

3

Wie groß ist die (auf den Widerstand $1 \hspace{0.05cm} \rm \Omega$ bezogene) Prozessleistung?

$P_x \ =$

$\ \rm V^2$

4

Berechnen Sie die AKF-Werte für $\tau = T$ und $\tau = 2T$.

$\varphi_x(\tau = T) \ =$

$\ \rm V^2$
$\varphi_x(\tau = 2T) \ =$

$\ \rm V^2$

5

Skizzieren Sie den AKF-Verlauf unter Berücksichtigung von Symmetrieen. Welche Werte ergeben sich für $\tau = 3T$ und $\tau = 4T$?

$\varphi_x(\tau = 3T) \ =$

$\ \rm V^2$
$\varphi_x(\tau = 4T)\ =$

$\ \rm V^2$

6

Berechnen Sie den Erwartungswert der AKF bezüglich aller $\tau$-Werte. Interpretieren Sie das Ergebnis.

${\rm E}[\varphi_x(\tau)]\ =$

$\ \rm V^2$


Musterlösung

Zur AKF-Berechnung

(1)  Die (normierte) Periodendauer beträgt $T_0/T \hspace{0.15cm}\underline{= 5}.$

(2)  Aufgrund der Periodizität genügt die Mittelung über eine Periodendauer $T_0$:

$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$

(3)  In analoger Weise zur letzten Teilaufgabe erhält man für die mittlere Leistung:

$$P_x = \frac{2 T}{5 T} \cdot [(\rm 2V)^2 +(- \rm 1V)^2 ]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$

(4)  Die Grafik zeigt jeweils im Bereich von $0$ bis $T_0 = 5T$

  • oben das Produkt $x(t) \cdot x(t+T)$,
  • unten das Produkt $x(t) \cdot x(t+2T)$.


Zu beachten ist, dass $x(t+T)$ eine Verschiebung des Signals $x(t)$ um $T$ nach links bedeutet. Aus diesen Skizzen folgen die Beziehungen:

$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$


(5)  Eine Autokorrelationsfunktion ist stets gerade: $\varphi_x (-\tau)= \varphi_x (\tau)$. Bei periodischen Prozessen ist die AKF zudem ebenfalls periodisch und zwar mit genau der gleichen Periodendauer $T_0$ wie die einzelnen Musterfunktionen. Daraus folgt:

AKF-Berechnung von Rechtecksignalen
$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = .... = \it P_x = \rm 2 \,V^2,$$
$$\varphi_x (3 T) = \varphi_x (-3 T) =\varphi_x (2 T) = .... \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2},$$
$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = .... \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$

Die berechneten AKF-Werte können durch Geradenabschnitte miteinander verbunden werden, da die Integration über Rechteckfunktionen stets lineare Teilabschnitte ergibt.


(6)  Die fünf Intervalle ($0$ bis $T$), ($T$ bis $2T$), ... , ($4$ bis $5T$) liefern die Beiträge $(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$
Daraus ergibt sich der Erwartungswert (lineare Mittelwert): $${\rm E}[\varphi_x(\tau)] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$

Dies entspricht dem Quadrat des Mittelwertes $m_x$ (siehe Teilaufgabe 2).