Exercise 4.13: Gaussian ACF and PSD

From LNTwww
Revision as of 10:42, 29 March 2017 by Guenter (talk | contribs)

Zweimal gaußförmige AKF

Der hier betrachtete Zufallsprozess $\{x_i(t)\}$ sei durch die oben skizzierte Autokorrelationsfunktion (AKF) charakterisiert. Dieser Zufallsprozess ist mittelwertfrei und die äquivalente AKF-Dauer beträgt ${ {\rm \nabla} }\tau_x = 5 \hspace{0.05cm} \rm \mu s$:

$$\varphi_x(\it \tau)=\rm 0.25 V^2\cdot \rm e^{-\pi \hspace{0.03cm}\cdot \hspace{0.03cm} ({\tau}{/ 5 {\rm\mu}s })^2} .$$


Im unteren Bild ist die AKF des Prozesses $\{y_i(t)\}$ dargestellt. Diese lautet mit der äquivalenten AKF-Dauer ${ {\rm \nabla} }\tau_y = 10 \hspace{0.05cm} \rm \mu s$:

$$ \varphi_y(\it \tau)=\rm 0.16 V^2 + \rm 0.09 V^2\cdot\rm e^{-\pi \hspace{0.03cm}\cdot \hspace{0.03cm} ({\tau}/{\nabla \it \tau_y})^2} .$$

In dieser Aufgabe werden die Leistungsdichtespektren der beiden Prozesse gesucht.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Leistungsdichtespektrum.
  • Bezug genommen wird auch auf das Kapitel Autokorrelationsfunktion.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Zur Lösung dieser Aufgabe können Sie die folgende Fourierkorrespondenz benutzen:
$$\rm e^{-\pi \hspace{0.03cm}\cdot \hspace{0.03cm} ({\it f}/{\rm \Delta\it f})^2}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, {\rm \Delta \it f} \cdot \rm e^{-\pi \hspace{0.03cm}\cdot \hspace{0.03cm} ({\rm \Delta\it f} \hspace{0.03cm}\cdot \hspace{0.03cm}\it t )^{\rm 2}}.$$


Fragebogen

1

Wie groß ist die äquivalente LDS-Bandbreite des Prozesses $\{x_i(t)\}$?

$ {\rm \nabla} \hspace{-0.05cm} f_x \ = $

$\ \rm kHz$

2

Wie lautet ${\it \Phi}_x(f)$? Geben Sie die LDS-Werte für $f= 0$ und $f = 200 \hspace{0.05cm} \rm kHz$ ein.

${\it \Phi}_x(f = 0)\ = $

$\ \cdot 10^{-6} \ \rm V^2\hspace{-0.1cm}/Hz$
${\it \Phi}_x(f = 200 \hspace{0.05cm} \rm kHz)\ = $

$\ \cdot 10^{-6} \ \rm V^2\hspace{-0.1cm}/Hz$

3

Welche Aussagen gelten, wenn der Zufallsprozess keine periodischen Anteile besitzt? Vorausgesetzt wird desweiteren eine konstante Leistung.

Die Prozessleistung ist das Integral über das LDS.
Bei mittelwertfreiem Prozess ist das LDS stets kontinuierlich.
Je breiter die AKF ist, um so breiter ist auch das LDS.
Eine breitere AKF bewirkt höhere LDS-Werte.

4

Berechnen Sie das Leistungsdichtespektrum ${\it \Phi}_y(f)$. Welche Werte ergeben sich für den kontinuierlichen LDS-Anteil bei $f= 0$ und $f = 200 \hspace{0.05cm} \rm kHz$?

${\it \Phi}_y(f = 0)\ = $

$\ \cdot 10^{-6} \ \rm V^2\hspace{-0.1cm}/Hz$
${\it \Phi}_y(f = 200 \hspace{0.05cm} \rm kHz)\ = $

$\ \cdot 10^{-6} \hspace{0.05cm} \rm V^2\hspace{-0.1cm}/Hz$

5

Welche der folgenden Aussagen stimmen bezüglich des Prozesses $\{y_i(t)\}$?

Das LDS beinhaltet einen Dirac bei der Frequenz $ f = {\rm \nabla} \hspace{-0.05cm} f_y$.
Das LDS beinhaltet einen Dirac bei der Frequenz $f= 0$.
Diracgewicht und kontinuierliches LDS haben gleiche Einheit.


Musterlösung

(1)  Die äquivalente LDS-Bandbreite ist der Kehrwert der äquivalenten AKF-Dauer:

$$\nabla f_x = 1 / \nabla \tau_x \hspace{0.15cm}\underline{= {\rm 200\hspace{0.1cm}kHz}}.$$

(2)  Die angegebene Fourierkorrespondenz kann man wie folgt an die Aufgabenstellung anpassen:

$$K\cdot{\rm e}^{-\pi({\tau}/{\nabla\tau_x})^2}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\frac{\it K}{\nabla \it f_x}\cdot{\rm e}^{-\pi({f}/{\nabla f_x})^2}.$$

Mit $K = 0.25 \hspace{0.05cm}\rm V^2$ und $ {\rm \nabla} \hspace{-0.05cm} f_x = 200\hspace{0.05cm} \rm kHz$ erhält man:

$${\it \Phi_x}(f)=1.25\cdot\rm 10^{-\rm 6}\hspace{0.1cm}\frac{V^2}{Hz}\cdot\rm e^{-\pi({\it f}/{\nabla\it f_x})^2}.$$
$$\Rightarrow \hspace{0.3cm}{\it \Phi_x}(f = 0)=\hspace{0.15cm}\underline{\rm 1.25 \cdot 10^{-6} \hspace{0.1cm} V^2\hspace{-0.1cm}/Hz}, \hspace{0.5cm}{\it \Phi_x}(f = 200 \hspace{0.05cm} \rm kHz)=\hspace{0.15cm}\underline{\rm 0.054 \cdot 10^{-6} \hspace{0.1cm} V^2\hspace{-0.1cm}/Hz}.$$

(3)  Richtig sind die Lösungsvorschläge 1, 2 und 4:

  • Ein mittelwertfreier Prozess hat stets ein kontinuierliches LDS zur Folge. Dieses ist um so schmaler, je breiter die AKF ist (Reziprozitätsgesetz).
  • Da die Prozessleistung gleich dem Integral über das LDS ist, muss bei konstanter Prozessleistung eine breitere AKF (schmaleres LDS) durch höhere LDS-Werte ausgeglichen werden.
  • Ein Gleichanteil oder periodische Anteile führen stets zu Diracfunktionen im LDS; ansonsten ist das LDS stets wertkontinuierlich.


(4)  Analog zu Teilaufgabe (2) gilt mit $ {\rm \nabla} \hspace{-0.05cm} f_y = 100\hspace{0.05cm} \rm kHz$:

$${\it \Phi_y}(f)=\frac{\rm 0.09 V^2}{\nabla\it f_y}\cdot\rm e^{-\pi({\it f}/{\nabla\it f_y})^2}+\it m_y^{\rm 2}\cdot\delta(f).$$
  • Aufgrund des Gleichanteils gibt es zusätzlich zum kontinuierlichen LDS-Anteil noch einen Dirac bei der Frequenz $f = 0$.
  • Der kontinuierliche LDS–Anteil bei $f= 0$ beträgt ${\it \Phi_y}(f = 0)=\hspace{0.15cm}\underline{\rm 0.9 \cdot 10^{-6} \hspace{0.1cm} V^2\hspace{-0.1cm}/Hz}.$
  • Der Anteil bei $f = 2 \cdot {\rm \nabla} \hspace{-0.05cm} f_y = 200 \hspace{0.05cm}\rm kHz$ ist um den Faktor ${\rm e}^{-4} \approx 0.0183$ geringer   ⇒   ${\it \Phi_y}(f )=\hspace{0.15cm}\underline{\rm 0.0165 \cdot 10^{-6} \hspace{0.1cm} V^2\hspace{-0.1cm}/Hz}.$


(5)  Richtig ist also nur der zweite Lösungsvorschlag:

  • Das LDS eines mittelwertbehafteten Prozesses beinhaltet allgemein eine Diracfunktion bei $f=0$ mit Gewicht $m_y^2$; im vorliegenden Fall ist dieser Wert gleich $0.16 \ \rm V^2$.
  • Da $\delta(f)$ die Einheit $\rm 1/Hz = s$ besitzt, unterscheiden sich die Einheiten des kontinuierlichen und des diskreten LDS-Anteils.