Exercise 2.7: Huffman Application for Binary Two-Tuples

From LNTwww
Revision as of 11:00, 24 May 2017 by Guenter (talk | contribs)

Beispielhafte Binärcodes für M = 4

Die Anwendung des Huffman–Algorithmus in seiner ursprünglichen Form setzt einen Symbolumfang $M > 2$ voraus und ist deshalb zur Datenkomprimierung von Binärquellen unbrauchbar.

Fasst man aber mehrere aufeinanderfolgende Binärzeichen der Nachrichtenquelle zu einem neuen Symbol zusammen, so kann man auf die neue Symbolmenge die Huffman–Datenkomprimierung sinnvoll anwenden.

Wir gehen in dieser Aufgabe von der Symbolmenge $\{$X, Y$\}$  ⇒  aus $M = 2$ und bilden gemäß der obigen Tabelle Zweiertupel mit dem Symbolvorrat $\{$A, B, C, D$\}$  ⇒  $M' = M^2 = 4$. Beispielsweise wird somit aus der binären Quellensymbolfolge XYXXYXXXYY die quaternäre Folge BACAD.

Desweiteren sind in obiger Tabelle drei Codes angegeben, von denen manche durch den Huffman–Algorithmus entstanden sind. Die binären Ausgangsfolgen ergeben sich dann für unser Beispiel wie folgt:

  • Code 1:   1011011100,
  • Code 2:   0110011000,
  • Code 3:   10011001110.


Nochmals zum Verständnis:

  • Aus der ursprünglichen Symbolmenge $\{$X, Y$\}$ erhält man durch Bildung von Zweiertupeln eine Quaternärmenge mit Symbolvorrat $\{$A, B, C, D$\}$. Die Folgenlänge $N$ wird dadurch auf $N' = N/2 $ halbiert.
  • Durch Huffman–Codierung ergibt sich wieder eine Binärfolge, deren Symbolmenge zur besseren Unterscheidung mit $\{$01$\}$ bezeichnet wird.
  • Die Anwendung der Huffman–Codierung macht genau dann Sinn, wenn die Länge $L$ der Ausgangsfolge (im statistischen Mittel) kleiner ist als $N$.


Mit dieser Aufgabe soll geklärt werden, welche der vorgegebenen Binärcodes bei welchen Randbedingungen sinnvoll sind. Die binäre Nachrichtenquelle $\{$X, Y$\}$ sei gedächtnislos und wird allein durch die Symbolwahrscheinlichkeit $p_{\rm X}$ beschrieben. Die zweite Wahrscheinlichkeit ist dann stets $p_{\rm Y} = 1 - p_{\rm X}$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Entropiecodierung nach Huffman.
  • Insbesondere wird auf die Seite Anwendung der Huffman-Codierung auf k-Tupel.
  • Die mittlere Codewortlänge pro Zweiertupel ist $L_{\rm M}' = p_{\rm A} \cdot L_{\rm A} +$ ... $ + p_{\rm D} \cdot L_{\rm D} \hspace{0.05cm}$. Bezogen auf ein Quellensymbol gilt $L_{\rm M} = L_{\rm M}'/2$.
  • Eine vergleichbare Aufgabenstellung mit ternären Eingangssymbolen wird in der Zusatzaufgabe 2.7Z behandelt.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Die Idee zu dieser Aufgabe entstand bei einem Vortrag von Prof. Robert Fischer von der Universität Ulm an der TU München zum Thema „Der goldene Schnitt in der Nachrichtentechnik”.


Fragebogen

1

Geben Sie die Codewortlängen bei redundanzfreier Binärquelle an.

Code 1:   $L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$
Code 2:   $L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$
Code 3:   $L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

2

Ermitteln Sie den Huffman–Code hinsichtlich Zweiertupel für $p_{\rm X}= 0.6$.

Es ergibt sich Code 1.
Es ergibt sich Code 2.
Es ergibt sich Code 3.

3

Wie groß ist die mittlere Codewortlänge des für $p_{\rm X}= 0.6$ besten Huffman–Codes?

$L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

4

Ermitteln Sie den Huffman–Code hinsichtlich Zweiertupel für $p_{\rm X}= 0.8$.

Es ergibt sich Code 1.
Es ergibt sich Code 2.
Es ergibt sich Code 3.

5

Wie groß ist die mittlere Codewortlänge des für $p_{\rm X}= 0.8$ besten Huffman–Codes?

$L_{\rm M} \ = \ $

$\ \rm bit/Quellensymbol$

6

In welchem Bereich darf die Wahrscheinlichkeit $p_{\rm X}$ für das Symbol X liegen, damit sich nach Huffman der Code 1 ergibt?

$p_\text{X, min}$ =

$p_\text{X, max}$ =


Musterlösung

1  Bei redundanzfreier Binärquelle (pX = pY = 1/2) erhält man pA = pB = pC = pD = 1/4 und mit der angegebenen Gleichung:

$$L_{\rm M} \hspace{0.2cm} = \hspace{0.2cm} \big [ \hspace{0.05cm}p_{\rm A} \cdot L_{\rm A} + p_{\rm B} \cdot L_{\rm B} + p_{\rm C} \cdot L_{\rm C} + p_{\rm D} \cdot L_{\rm D} \hspace{0.05cm} \big ] / 2 = \\ \hspace{0.2cm} = \hspace{0.2cm} \big [ \hspace{0.05cm} L_{\rm A} + L_{\rm B} + L_{\rm C} + L_{\rm D}\hspace{0.05cm} \big ] / 8 \hspace{0.05cm}.$$

Berücksichtigt man die angegebenen Zuordnungen, so erhält man für

  • Code 1:    LM = 1.000 bit/Quellensymbol,
  • Code 2:    LM = 1.125 bit/Quellensymbol,
  • Code 3:    LM = 1.250 bit/Quellensymbol.

Im Verlauf der Aufgabe wird sich zeigen, dass die beiden ersten Codes durchaus als Ergebnis des Huffman–Algorithmus möglich sind (natürlich nur bei geeigneten Symbolwahrscheinlichkeiten). Code 3 ist zwar ebenfalls präfixfrei, aber hinsichtlich der mittleren Codewortlänge nie optimal.

2.  Die Wahrscheinlichkeiten der möglichen Zweiertupel lauten:

$$p_{\rm A} = 0.6^2 = 0.36 \hspace{0.05cm}, \hspace{0.2cm}p_{\rm B}= 0.6 \cdot 0.4 = 0.24 = p_{\rm C} \hspace{0.05cm},\hspace{0.2cm} p_{\rm D}= 0.4^2 = 0.16 \hspace{0.05cm}.$$

Damit ergibt sich das linke Baumdiagramm (siehe Grafik) und der folgende Huffman–Code:

A11,   B10,   C01,   D00.

Es handelt sich um den Code 1   ⇒   Lösungsvorschlag 1.

P ID2456 Inf A 2 7b.png

3.  Jedes Zweiertupel wird durch zwei Bit dargestellt. Damit ist LM = 1 bit/Quellensymbol.

4.  Hier lauten die Wahrscheinlichkeiten der einzelnen Zweiertupel:

$$p_{\rm A} = 0.8^2 = 0.64 \hspace{0.05cm}, \hspace{0.2cm}p_{\rm B}= 0.8 \cdot 0.2 = 0.16 = p_{\rm C} \hspace{0.05cm},\hspace{0.2cm} p_{\rm D}= 0.2^2 = 0.04 \hspace{0.05cm}. $$

Entsprechend dem rechten Baumdiagramm ergibt sich nun Code 2   ⇒   Lösungsvorschlag 2:

A1,   B01,   C011,   D010.

5.  Hier gilt für die mittlere Zweiertupellänge bzw. die mittlere Codewortlänge:

$$L_{\rm M}' = 0.64 \cdot 1 + 0.16 \cdot 2 + (0.16 + 0.04) \cdot 3 = 1.56\,{\rm bit/Zweiertupel}$$
$$\Rightarrow\hspace{0.3cm}L_{\rm M} = \frac{L_{\rm M}'}{2}\hspace{0.15cm}\underline{ = 0.78\,{\rm bit/Quellensymbol}}\hspace{0.05cm}.$$

6.  Beispielsweise ist für pX = 0.8 entsprechend der Teilaufgabe (4) der Code 2 optimal und die mittlere Codewortlänge beträgt LM = 0.78 bit/Quellensymbol. Für pX = 0.6 ist dagegen Code 1 optimal und die mittlere Codewortlänge ist LM = 1 bit/Quellensymbol (dieses Ergebnis ist unabhängig von pX).

Der gesuchte Maximalwert pX, max wird zwischen 0.6 und 0.8 liegen. Die Bestimmungsgleichung ist dabei, dass für den Grenzfall pX = pX, max beide Codes genau die gleiche mittlere Codewortlänge LM = 1 bit/Quellensymbol besitzen, bzw. LM = 2 bit/Zweiertupel.

Mit der Abkürzung p = pX, max lautet die Gleichung:

$$L_{\rm M}'\hspace{0.15cm}{\rm (Code \hspace{0.15cm}2)} = p^2 \cdot 1 + p \cdot (1-p) \cdot 2 + p \cdot (1-p) \cdot 3 + (1-p)^2 \cdot 3 \stackrel{!}{=} 2 \hspace{0.05cm}.$$

Dies führt zum zahlenmäßigen Ergebnis:

$$p^2 + p - 1 \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} p_{\rm X,\hspace{0.05cm}max} = p = \frac{\sqrt{5}-1}{2} \hspace{0.15cm}\underline{ \approx 0.618} \hspace{0.05cm}.$$

Da sich die grundsätzliche Huffman–Struktur durch Vertauschen von X und Y nicht ändert, gilt für die untere Grenze:

$$p_{\rm X,\hspace{0.05cm}min} = 1 - p_{\rm X,\hspace{0.05cm}max}\hspace{0.15cm}\underline{ \approx 0.382} \hspace{0.05cm}.$$

Die Darstellung der Zweiertupel durch unterschiedlich lange Bitfolgen (Code 2) macht also nur dann Sinn, wenn sich die Symbolwahrscheinlichkeiten von X und Y signifikant unterscheiden. Liegen diese dagegen zwischen 0.382 und 0.618, so ist Code 1 anzuwenden.

Die Aufteilung einer Strecke der Länge 1 in zwei Abschnitte der Länge 0.618... und 0.382... bezeichnet man als Goldenen Schnitt, auf den man in den verschiedensten Fachgebieten immer wieder stößt.