Exercise 3.9: Conditional Mutual Information

From LNTwww
Revision as of 16:27, 1 June 2017 by Guenter (talk | contribs)

Zusammenhang zwischen den Zufallsgrößen X, Y, Z und W

Wir gehen von den statistisch unabhängigen Zufallsgrößen $X$, $Y$ und $Z$ mit den folgenden Eigenschaften aus :

$$X \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} Y \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} Z \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} P_X(X) = P_Y(Y) = [ 1/2 , 1/2]\hspace{0.05cm},\hspace{0.35cm}P_Z(Z) = [ p, 1-p].$$

Aus $X$, $Y$ und $Z$ bilden wir die neue Zufallsgröße $W = (X+Y) \cdot Z$.

  • Damit ist offensichtlich, dass es zwischen den beiden Zufallsgrößen $X$ und $W$ statistische Abhängigkeiten gibt, die sich auch in der Transinformation $I(X; W) ≠ 0$ zeigen werden.
  • Außerdem wird auch $I(Y; W) ≠ 0$ sowie $I(Z; W) ≠ 0$ gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.


In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:

  • die herkömmliche Transinformation zwischen $X$ und $W$:
$$I(X;W) = H(X) - H(X|\hspace{0.05cm}W) \hspace{0.05cm},$$
  • die bedingte Transinformation zwischen $X$ und $W$ bei gegebenem Festwert $Z = z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z = z) - H(X|\hspace{0.05cm}W ,\hspace{0.05cm} Z = z) \hspace{0.05cm},$$
  • die bedingte Transinformation zwischen $X$ und $W$ bei gegebener Zufallsgröße $Z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z ) - H(X|\hspace{0.05cm}W \hspace{0.05cm} Z ) \hspace{0.05cm}.$$

Der Zusammenhang zwischen den beiden letzten Definitionen lautet:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.2cm} P_Z(z) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z)\hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 1$ gilt?

$ I(X; W | Z = 1) \ = \ $

$\ \rm bit$

2

Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 2$ gilt?

$ I(X; W | Z = 2) \ = \ $

$\ \rm bit$

3

Nun gelte $p = {\rm Pr}(Z = 1)$. Wie groß ist die bedingte Transinformation zwischen $X$ und $W$, falls $z \in Z = \{1, 2\}$ bekannt ist?

$p = 1/2\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$
$p = 3/4\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$

4

Wie groß ist die unkonditionierte Transinformation?

$p = 1/2\text{:} \ \ \ I(X; W) \ = \ $

$\ \rm bit$


Musterlösung

1.
P ID2814 Inf A 3 8a.png

Die folgende Grafik gilt für $Z = 1 \Rightarrow W = X + Y$. Unter den Voraussetzungen $P_X(X) = [1/2, 1/2]$ sowie $P_Y(Y) = [1/2, 1/2]$ ergeben sich somit die Verbundwahrscheinlichkeiten $P_{ XW|Z=1 }(X, W)$ entsprechend der rechten Grafik (graue Hinterlegung).

Damit gilt für die Transinformation unter der festen Bedingung $Z = 1$:

$$I(X;W \mid Z=1) = \sum\limits_{(x,w) \epsilon supp (P_{ XW } \mid Z=1)} P_{ XW \mid Z=1 }(x,w) . log_2 \frac{ P_{ XW \mid Z=1 }(x,w)}{ P_X(X) . P_{ W \mid Z=1 } (w)}=$$ $$= 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} + 2 . \frac{1}{4} . log_2 \frac{1/4}{1/2 . 1/4} = 0.5 (bit)$$ Der erste Term fasst die beiden horizontal schraffierten Felder in obiger Grafik zusammen, der zweite Term die vertikal schraffierten Felder. Letztere liefern wegen $log_2 (1) = 0$ keinen Beitrag.


P ID2815 Inf A 3 8b.png

2. Für $Z = 2$ gilt zwar '$W = \{4, 6, 8\}$, aber hinsichtlich der Wahrscheinlichkeitsfunktionen ändert sich gegenüber der Teilaufgabe (a) nichts. Demzufolge erhält man auch die gleiche bedingte Transinformation:

$I(X;W \mid Z=2) = I(X;W \mid Z=1) = 0.5 (bit)$


3. Es ist berücksichtigt, dass entsprechend den Teilaufgaben (a) und (b) die bedingten Transinformationen für gegebenes $Z = 1$ und gegebenes $Z = 2$ gleich sind. Damit ist $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße $Z = \{1, 2\}$ mit $P_Z(Z) = [p, 1 – p]$, unabhängig von p. Das Ergebnis gilt insbesondere auch für $p = 1/2$ und $p = 3/4$.


4. Die Verbundwahrscheinlichkeiten P_{ XW }(⋅) hängen auch von den $Z$–Wahrscheinlichkeiten $p$ und $1 – p$ ab. Für $Pr(Z = 1) = Pr(Z = 2) = 1/2$ ergibt sich das nachfolgend skizzierte Schema. Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:

$I(X;W) = 2 . \frac{1}{8} . log_2 \frac{1/8}{1/2 . 1/8} = 0.25 (bit) < I(X; W \mid Z)$.

P ID2816 Inf A 3 8d.png

Das Ergebnis $I(X; W|Z) > I(X; W)$ trifft für dieses Beispiel, aber auch für viele andere Anwendungen zu: Kenne ich $Z$, so weiß ich mehr über die 2D–Zufallsgröße $XW$ als ohne diese Kenntnis. Man darf dieses Ergebnis aber nicht verallgemeinern. Manchmal gilt tatsächlich $I(X; W) > I(X; W|Z)$, so wie im Beispiel im Theorieteil.