Exercise 3.3Z: Optimization of a Coaxial Cable System
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
- Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie $E_{\rm B} = s_0^2 \cdot T$.
- Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung $a_* = 40 \, {\rm dB}$.
- Es liegt AWGN–Rauschen mit der Rauschleistungsdichte $N_0 = 0.0001 \cdot E_{\rm B}$ vor.
- Der Empfängerfrequenzgang $H_{\rm E}(f)$ beinhaltet einen idealen Kanalentzerrer $H_{\rm K}^{\rm -1}(f)$ und einen Gaußtiefpass $H_{\rm G}(f)$ mit Grenzfrequenz $f_{\rm G}$ zur Rauschleistungsbegrenzung.
Die Tabelle zeigt die Augenöffnung $\ddot{o}(T_{\rm D})$ sowie den Detektionsrauscheffektivwert $\sigma_{\rm d}$ – jeweils normiert auf die Sendeamplitude $s_0$ – für verschiedene Grenzfrequenzen $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit
- $$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
möglichst klein ist. Die ungünstigste Fehlerwahrscheinlichkeit stellt eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ dar. Für $f_{\rm G} \cdot T ≥ 0.4$ kann auch eine untere Schranke angegeben werden:
- $${1}/{4} \cdot p_{\rm U}\le p_{\rm S}\le p_{\rm U} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Berücksichtigung von Kanalverzerrungen und Entzerrung.
- Verwenden Sie zur numerischen Auswertung der Q–Funktion das Interaktionsmodul Komplementäre Gaußsche Fehlerfunktionen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Hinweise:
- Die Aufgabe gehört zum Themengebiet von Berücksichtigung von Kanalverzerrungen und Entzerrung.
- Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul nutzen: Gaußsche Fehlerfunktion
Fragebogen
Musterlösung
Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert, ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird.
(2) Mit dem Ergebnis aus 1) erhält man weiter:
- $$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}$$
- $$\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
(3) Mit dem gegebenen $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$, also $E_{\rm B}/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_{\rm B}/N_0$ entsprechend erhöht:
- $$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}$$
- $$\Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$
(4) Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.