Exercise 4.16: Binary Frequency Shift Keying

From LNTwww
Revision as of 13:56, 9 November 2017 by Hussain (talk | contribs)

Bandpass-Signale der FSK

Bei der binären FSK werden die beiden Nachrichten $m_0$ und $m_1$ durch zwei unterschiedliche Frequenzen dargestellt. Für die beiden möglichen Bandpass–Signale gilt dann jeweils im Bereich $0 ≤ t ≤ T$ mit $f_0 = f_{\rm T} + \Delta f_{\rm A}$ sowie $f_1 = f_{\rm T} \, – \Delta f_{\rm A}$:

$$s_{\rm BP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},$$
$$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm}.$$

Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die Trägerfrequenz an und $\Delta f_{\rm A}$ den Frequenzhub als die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:

$$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz$ =

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)