Exercise 5.3Z: Analysis of the BSC Model
Wir betrachten zwei verschiedene BSC–Modelle mit den folgenden Parametern:
- Modell $M_1 \text{:} \hspace{0.4cm} p = 0.01$,
- Modell $M_2 \text{:} \hspace{0.4cm} p = 0.02$.
Die Grafik zeigt eine Fehlerfolge der Länge $N = 1000$, wobei allerdings nicht bekannt ist, von welchem der beiden Modelle diese Folge stammt.
Die beiden Modelle sollen anhand
- der Fehlerabstandswahrscheinlichkeiten
- $${\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm},$$
- der Fehlerabstandsverteilung
- $$V_a(k) = {\rm Pr}(a \ge k) = (1-p)^{k-1}\hspace{0.05cm},$$
- der Fehlerkorrelationsfunktion
- $$\varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + k}] =$$
- $$\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm \ddot{u}r }\hspace{0.15cm} k \ne 0 \hspace{0.05cm}.\\ \end{array}$$
analysiert werden.
Hinweis:
- Die Aufgabe gehört zum Themengebiet des Kapitels Binary Symmetric Channel (BSC).
Fragebogen
Musterlösung
- $$\varphi_{e}(k) = \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.15cm}k = 0 \hspace{0.05cm}, \\ f{\rm \ddot{u}r }\hspace{0.15cm} k \ne 0 \hspace{0.05cm},\\ \end{array} \hspace{0.4cm}V_a(k) = (1-p)^{k-1}\hspace{0.05cm}.$$
$p$ lässt sich aus allen angegebenen Kenngrößen ermitteln, nur nicht aus $V_a(k = 1)$. Dieser FAV–Wert ist unabhängig von $p$ gleich $(1–p)^0 = 1$. Zutreffend sind somit die Lösungsvorschläge 1, 2, 4 und 5.
(2) Die relative Fehlerhäufigkeit der angegebenen Folge ist gleich $h_{\rm F} = 22/1000 \approx 0.022$. Es ist ganz offensichtlich, dass die Fehlerfolge vom Modell $M_2$ ⇒ $p_{\rm M} = 0.02$ generiert wurde. Aufgrund der kurzen Folge stimmt $h_{\rm F}$ mit $p_{\rm M}$ zwar nicht exakt überein, aber zumindest näherungsweise ⇒ Vorschlag 2.
(3) Der mittlere Fehlerabstand – also der Erwartungswert der Zufallsgröße $a$ – ist gleich dem Kehrwert der mittleren Fehlerwahrscheinlichkeit ⇒ $E[a] = 1/0.1 \ \underline {= 10}$.
(4) Entsprechend der Gleichung ${\rm Pr}(a = k) = (1–p)^{k–1} \cdot p$ erhält man:
- $${\rm Pr}(a = 1) \hspace{-0.1cm} \ \hspace{0.15cm} = \ \hspace{-0.1cm} 0.1\hspace{0.05cm}, \hspace{0.2cm}{\rm Pr}(a = 2) = 0.9 \cdot 0.1 \hspace{0.15cm}\underline {= 0.09}\hspace{0.05cm},$$
- $${\rm Pr}(a = {\rm E}[a]) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(a = 10)= 0.9^9 \cdot 0.1 \hspace{0.15cm}\underline {= 0.0387}\hspace{0.05cm}.$$
(5) Aus der Beziehung $V_a(k) = (1–p)^{k–1}$ erhält man
- $$V_a(k = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.9^1 \hspace{0.15cm}\underline {= 0.9 } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(a = 1) = V_a(k = 1) - V_a(k = 2) = 0.1\hspace{0.05cm},$$
- $$V_a(k = 10)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.9^9 \hspace{0.15cm}\underline {=0.3874}\hspace{0.05cm},\hspace{0.2cm}V_a(k = 11)= 0.9^{10} \hspace{0.15cm}\underline {=0.3487}$$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr}(a = 10) = V_a(k = 10) - V_a(k = 11) = 0.3874 - 0.3487 {= 0.0387}\hspace{0.05cm}.$$