Exercise 1.12: Hard Decision vs. Soft Decision
Die Abbildung zeigt die Blockfehlerwahrscheinlichkeit für den (7, 4, 3)–Hamming–Code, wobei für den Empfänger zwei Varianten berücksichtigt sind:
- Bei Maximum–Likelihood–Detektion mit harten Entscheidungen (Hard Decision, HD), die im vorliegenden Fall (perfekter Code) auch durch Syndromdecodierung realisiert werden kann, ergibt sich die rote Kurve (Kreismarkierung).
- Der Kanal kann bei Hard Decision vereinfacht durch das BSC–Modell ersetzt werden. Der Zusammenhang zwischen dem BSC–Parameter $\varepsilon$ und dem AWGN–Quotienten $E_{\rm B}/N_{0}$ (in der Grafik verwendet) ist wie folgt gegeben:
- $$\varepsilon = {\rm Q}\left ( \sqrt{2 \cdot R \cdot E_{\rm B}/N_0} \right ) \hspace{0.05cm}.$$
Hier bezeichnet Q(x) die komplementäre Gaußsche Fehlerfunktion und R die Coderate.
- Die grüne Kurve (Kreuze) zeigt die Blockfehlerwahrscheinlichkeit bei „weichen” Entscheidungen (Soft Decision, SD). Dieser Funktionsverlauf lässt sich nicht in geschlossen–mathematischer Form angeben. In der Grafik eingezeichnet ist eine in [Fri96] angegebene obere Schranke:
- $$ {\rm Pr(Blockfehler)} \hspace{-0.15cm}\ \le \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{ 3 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right )+\\ \hspace{-0.15cm}\ + \ \hspace{-0.15cm}7 \cdot {\rm Q}\left ( \sqrt{ 4 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) + {\rm Q}\left ( \sqrt{ 7 \cdot \frac{2 \cdot R \cdot E_{\rm B}}{N_0}} \right ) \hspace{0.05cm}.$$
Der jeweils erste Faktor im Argument der Q–Funktion gibt die möglichen Hamming–Distanzen an: $i = 3, 4 {\rm und} 7$. Die Vorfaktoren berücksichtigen die Vielfachheiten $W_{3} = W_{4} = 7 {\rm und} W_{7} = 1$, und $R = 4/7$ beschreibt die Coderate. Für $10 · {\rm lg} \ E_{\rm B}/N_{0} > 8 \ {\rm dB}$ ist Pr(Blockfehler) kleiner als $10^{–5}$.
Hinweis:
Die Aufgabe bezieht sich auf das Kapitel Decodierung linearer Blockcodes. Verwenden Sie für numerische Ergebnisse das folgende Berechnungsmodul:
Komplementäre Gaußsche Fehlerfunktion
Fragebogen
Musterlösung