Exercise 1.2: ISDN and PCM

From LNTwww
Revision as of 09:49, 19 December 2017 by Guenter (talk | contribs)

Komponenten des PCM-Senders

Die Umwandlung des analogen Sprachsignals $q(t)$ in das Binärsignal $q_{\rm C}(t)$ geschieht bei ISDN (Integrated Services Digital Network) entsprechend den Richtlinien der Pulscodemodulation (PCM) durch

  • Abtastung im Abstand $T_{\rm A} = 1/f_{\rm A}$,
  • Quantisierung auf $M = 256$ diskrete Werte,
  • binäre PCM–Codierung mit $N$ Bit pro Quantisierungswert.


Die Netto–Datenrate eines so genannten $\rm B$–Kanals (Bearer Channel) ist $64 \ \rm kbit/s$ und entspricht der Bitrate des redundanzfreien Binärsignals $q_{\rm C}(t)$. Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals $s(t)$ – größer.


Ein Maß für die Qualität des gesamten (ISDN–)Übertragungssystems ist das Sinken–SNR

$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$

als das Verhältnis der Leistungen des auf den Bereich $300 \ {\rm Hz}\ \text{...}\ 3400 \ {\rm Hz}$ bandbegrenzten Analogsignals $q(t)$ und des Fehlersignals $\varepsilon (t) = v (t) - q(t)$. Für das Sinkensignal $\upsilon (t)$ wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.



Hinweis:

Die Aufgabe bezieht sich auf Allgemeine Beschreibung von ISDN dieses Buches sowie auf Pulscodemodulation des Buches „Modulationsverfahren”.


Fragebogen

1

Mit wievielen Bit $(N)$ wird jeder (quantisierte) Abtastwert repräsentiert?

$N \ = \ $

2

Wie groß ist die Abtastrate $f_{\rm A} $?

$f_{\rm A} \ = \ $

$ \ \rm kHz $

3

Ist damit das Abtasttheorem erfüllt?

Ja,
nein.

4

Ist das Sinken–SNR $\rho_{v}$ bei ISDN durch folgende Effekte begrenzt?

Abtastung (falls Abtasttheorem erfüllt),
AWGN–Rauschen (Übertragungsfehler).


Musterlösung

(1)  Die Quantisierungsstufenzahl $M$ wird meist als Zweierpotenz gewählt und für die Bitanzahl $N = {\log_2}\hspace{0.05cm}(M)$.
Aus $M = 2^{8} = 256$ folgt $\underline{N = 8}$.


(2)  Für die Bitrate gilt $R_{\rm B} = N \cdot f_{\rm A}$. Aus $R_{\rm B} = 64 \ \rm kbit/s$ und $N = 8$ erhält man somit $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.


(3)  Durch die Bandbegrenzung ist die höchste im Signal $q(t)$ enthaltene Frequenz gleich $3.4 \ \rm kHz$. Nach dem Abtasttheorem müsste deshalb $f_{\rm A} ≥ 6.8 \ \rm kHz$ gelten. Mit $f_{\rm A} = 8 \ \rm kHz$ ist die Bedingung erfüllt   ⇒   $\underline {\rm JA}$.


(4)  Richtig sind die beiden letzten Aussagen:

  • Auch wenn der Einfluss des AWGN–Rauschens gering ist (kleine Rauschleistungsdichte $N_{0}$), kann das Sinken–SNR $\rho_{v}$ einen durch das Quantisierungsrauschen gegebenen Grenzwert nicht unterschreiten:
$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  • Bei größerer Rauschstörung wird $\rho_{v}$ durch die dann vorhandenen Übertragungsfehler weiter (signifikant) verringert.
  • Dagegen führt die Abtastung zu keinem Qualitätsverlust, wenn das Abtasttheorem eingehalten wird.
  • Die Abtastung kann dann vollständig rückgängig gemacht werden, wenn das Quellensignal $q(t)$ bandbegrenzt ist und die Signalrekonstruktion (ein idealer Tiefpass) richtig dimensioniert ist.