Exercise 4.4: Conventional Entropy and Differential Entropy

From LNTwww
Revision as of 13:03, 29 May 2018 by Mwiki-lnt (talk | contribs) (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)

WDF gleichverteilter Zufallsgrößen

Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen $X$ und $Y$ mit den Wahrscheinlichkeitsdichtefunktionen $f_X(x)$ und $f_Y(y)$. Für diese Zufallsgrößen kann man

  • die herkömmlichen Entropien $H(X)$ bzw. $H(Y)$ nicht angeben,
  • jedoch aber die differentiellen Entropien $h(X)$ und $h(Y)$.


Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:

  • Die Zufallsgröße $Z_{X,\hspace{0.05cm}M}$ ergibt sich durch (geeignete) Quantisierung der Zufallsgröße $X$ mit der Quantisierungsstufenzahl $N$   ⇒   Quantisierungsintervallbreite ${\it Delta} = 0.5/M$.
  • Die Zufallsgröße $Z_{Y,\hspace{0.05cm}M}$ ergibt sich nach Quantisierung der wertkontinuierlichen Zufallsgröße $Y$ mit der Quantisierungsstufenzahl $M$   ⇒   Quantisierungsintervallbreite ${\it Delta} = 2/M$.


Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus $M$ Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind. Daraus lassen sich die Entropien $H(Z_{X,\hspace{0.05cm}M})$ und $H(Z_{Y,\hspace{0.05cm}M})$ in herkömmlicher Weise entsprechend dem Kapitel Wahrscheinlichkeitsfunktion und Entropie bestimmen.

Im Abschnitt Entropiewertkontinuierlicher Zufallsgrößen nach Quantisierung wurde auch eine Näherung angegeben. Beispielsweise gilt:

$$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$
  • Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF   ⇒   Gleichverteilung diese „Näherung” genau das gleiche Ergebnis liefert wie die direkte Berechnung.
  • Aber im allgemeinen Fall – so im Beispiel 2 mit dreieckförmiger WDF – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall ${\it Delta} \to 0$ mit der tatsächlichen Entropie $H(Z_{X,\hspace{0.05cm}M})$ übereinstimmt.


Hinweise:


Fragebogen

1

Berechnen Sie die differentielle Entropie $h(X)$.

$ h(X) \ = \ $

$\ \rm bit$

2

Berechnen Sie die differentielle Entropie $h(Y)$.

$ h(Y) \ = \ $

$\ \rm bit$

3

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen $Z_{X,\hspace{0.05cm}M=4}$ nach der direkten Methode.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

4

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen $Z_{X,\hspace{0.05cm}M=4}$ mit der angegebenen Näherung.

$H(Z_{X,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

5

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße $Z_{Y,\hspace{0.05cm}M=4}$ mit der angegebenen Näherung.

$H(Z_{Y,\hspace{0.05cm}M=4})\ = \ $

$\ \rm bit$

6

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße $Z_{Y,\hspace{0.05cm}M=8}$ mit der angegebenen Näherung.

$H(Z_{Y,\hspace{0.05cm}M=8})\ = \ $

$\ \rm bit$

7

Welche der folgenden Aussagen sind zutreffend?

Die Entropie einer diskreten Zufallsgröße $Z$ ist stets $H(Z) \ge 0$.
Die differenzielle Entropie einer kontinuierlichen Zufallsgröße $X$ ist stets $h(X) \ge 0$.


Musterlösung

(1)  Gemäß der entsprechenden Theorieseite gilt mit xmin = 0 und xmax = 1/2:

$$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$

(2)  Mit ymin = –1 und ymax = +1 ergibt sich dagegen für die differentielle Entropie der Zufallsgröße Y:

$$h(Y) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$
Quantisierte Zufallsgröße ZX, M = 4

(3)  Die nebenstehende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße X mit der Quantisierungsstufenzahl M = 4  ⇒  Zufallsgröße ZX,\hspace{0.05cm} M = 4:

  • Die Intervallbreite ist hier gleich Δ = 0.5/4 = 1/8.
  • Die möglichen Werte (jeweils in der Intervallmitte) sind z ∈ {0.0625, 0.1875, 0.3125, 0.4375}.
  • Die direkte Entropieberechnung ergibt mit der Wahrscheinlichkeitsfunktion PZ(Z) = [1/4, ... , 1/4]:
$$H(Z_{X, M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}} \hspace{0.05cm}.$$

(4)  Mit der Näherung erhält man unter Berücksichtigung des Ergebnisses der Teilaufgabe (1):

$$H(Z_{X,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) = 3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$

Hinweis: Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis wie die direkte Berechnung, also die tatsächliche Entropie.

Quantisierte Zufallsgröße ZY, M = 4


(5)  Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe (3):

  • Der Quantisierungsparameter ist nun Δ = 2/4 = 1/2.
  • Die möglichen Werte sind nun z ∈ {±0.75, ±0.25}.
  • Somit liefert hier die „Näherung” (ebenso wie die direkte Berechnung) das Ergebnis:
$$H(Z_{Y,\hspace{0.05cm} M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$
Quantisierte Zufallsgröße ZY, M = 8



(6)  Im Gegensatz zur Teilaufgabe (5) gilt nun Δ = 1/4. Daraus folgt für die „Näherung”:

$$H(Z_{Y,\hspace{0.05cm} M = 8}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y) = 2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$

Wieder gleiches Ergebnis bei direkter Berechnung.


(7)  Richtig ist nur die Aussage 1:

  • Die Entropie H(Z) einer diskreten Zufallsgröße Z = {z1, ... , zM} kann nie negativ werden. Der Grenzfall H(Z) = 0 ergibt sich zum Beispiel für Pr(Z = z1) = 1 und Pr(Z = zμ) = 0 für 2 ≤ μ ≤ M.
  • Dagegen kann die differentielle Entropie h(X) einer kontinuierlichen Zufallsgröße X negativ (Teilaufgabe 1), positiv (Teilaufgabe 2) oder auch h(X) = 0 ( zum Beispiel xmin = 0, xmax = 1) sein.