Exercise 2.2: Binary Bipolar Rectangles

From LNTwww
Revision as of 11:57, 11 February 2019 by Guenter (talk | contribs)

Beispiele für binäre bipolare Rechtecksignale

Wir gehen von folgendem Signal aus:

$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$

Der Sendegrundimpuls  $g_{s}(t)$  wird in dieser Aufgabe stets als rechteckförmig angenommen, wobei das NRZ–Format (blaue Signalverläufe in der Grafik) als auch das RZ–Format mit dem Tastverhältnis  $T_{\rm S}/T = 0.5$  (rote Signalverläufe) zu untersuchen ist.

Die Amplitudenkoeffizienten besitzen die folgenden Eigenschaften:

  • Sie sind binär und bipolar:   $a_{\nu} \in \{–1, +1\}$.
  • Die Symbole innerhalb der Folge  $\langle a_{\nu }\rangle$  weisen keine statistischen Bindungen auf.
  • Die Wahrscheinlichkeiten für die beiden möglichen Werte  $±1$  lauten mit  $0 < p < 1$:
$${\rm Pr}(a_\nu = +1) \ = \ p,$$
$${\rm Pr}(a_\nu = -1) \ = \ 1 - p \hspace{0.05cm}.$$

Die drei in der Grafik dargestellten Signalausschnitte gelten für  $p = 0.75$,  $p = 0.50$  und  $p = 0.25$.


Im Laufe dieser Aufgabe wird auf folgende Beschreibungsgrößen Bezug genommen:

  • $m_{a} = \E\big[a_{\nu}\big]$  gibt den linearen Mittelwert der Amplitudenkoeffizienten an.
  • $m_{2a} = \E\big[a_{\nu}^{2}\big]$  ist der quadratische Mittelwert.
  • Damit kann auch die Varianz  $\sigma_{a}^{2} = m_{2a} – m_{a}^{2}$  berechnet werden.
  • Die diskrete AKF der Amplitudenkoeffizienten ist  $\varphi_{a}(\lambda) = \E\big[a_{\nu} \cdot a_{\nu} + \lambda \big]$. Es gilt hier:
$$\varphi_a(\lambda) = \left\{ \begin{array}{c} m_2 \\ m_1^2 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}\lambda = 0, \\ \lambda \ne 0 \hspace{0.05cm}.\\ \end{array}$$
  • Die Energie–AKF des Sendegrundimpulses beträgt:
$$\varphi^{^{\bullet}}_{g_s}(\tau) = \left\{ \begin{array}{c} s_0^2 \cdot T_{\rm S} \cdot \left( 1 - {|\tau|}/{T_{\rm S}}\right) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c}|\tau| \le T_{\rm S} \\ |\tau| \ge T_{\rm S} \hspace{0.05cm}.\\ \end{array}$$
  • Damit erhält man für die gesamte AKF des Sendesignals:
$$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{g_s}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
  • Das Leistungsdichtespektrum  ${\it \Phi}_{s}(f)$  ist die Fouriertransformierte der AKF  $\varphi_{s}(\tau)$.




Hinweis:



Fragebogen

1

Welche der drei dargestellten Signale sind redundanzfrei?

$s_{0.75}(t)$,
$s_{0.50}(t)$,
$s_{0.25}(t)$,

2

Wie groß ist der quadratische Mittelwert  $m_{2a}$  der Amplitudenkoeffizienten in Abhängigkeit von  $p$?

$p = 0.75\text{:} \hspace{0.4cm} m_{2a} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} m_{2a} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} m_{2a} \ = \ $

3

Berechnen Sie den linearen Mittelwert  $m_{a}$  in Abhängigkeit von  $p$.

$p = 0.75\text{:} \hspace{0.4cm} m_{a} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} m_{a} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} m_{a} \ = \ $

4

Wie groß ist die Varianz  $\sigma_{a}^{2}$  der Amplitudenkoeffizienten?

$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

$p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

$p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^{2} \ = \ $

5

Es gelte zunächst  $p = 0.5$. Skizzieren Sie die AKF  $\varphi_{s}(\tau)$  für den NRZ– und den RZ–Grundimpuls und bewerten Sie folgende Aussagen:

Die AKF ist in beiden Fällen dreieckförmig.
Das LDS verläuft in beiden Fällen  ${\rm si}^{2}$–förmig.
Die LDS–Fläche ist in beiden Fällen gleich.
Bei RZ–Impulsen beinhaltet  ${\it \Phi}_{s}(f)$  zusätzliche Diracfunktionen.

6

Es gelte nun $p = 0.75$. Skizzieren Sie die AKF für den NRZ–Grundimpuls und bewerten Sie folgende Aussagen:

Die AKF besteht aus einem Dreieck und einem Gleichanteil.
Das LDS besteht aus einem  ${\rm si}^{2}$–Anteil und einem Dirac.
Die Diracfunktion hat das Gewicht  $s_{0}^{2}$.
Mit $p = 0.25$ ergibt sich das gleiche Leistungsdichtespektrum.

7

Es gelte weiter  $p = 0.75$. Skizzieren Sie die AKF für den RZ–Grundimpuls und bewerten Sie folgende Aussagen:

Auch hier beinhaltet das LDS einen  ${\rm si}^{2}$–förmigen Anteil.
Gleichzeitig gibt es im LDS noch unendlich viele Diraclinien.


Musterlösung

(1)  Man spricht von einem redundanzfreien Digitalsignal, wenn

  • die Amplitudenkoeffizienten nicht voneinander abhängen (dies wurde hier vorausgesetzt),
  • alle möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind.


In diesem Sinne ist $s_{0.5}(t)$ ein redundanzfreies Signal   ⇒   Lösungsvorschlag 2. Somit ist hier die Entropie (der mittlere Informationsgehalt pro übertragenem Binärsymbol) maximal gleich dem Entscheidungsgehalt:

$$H_{\rm max} = {1}/{2}\cdot {\rm log}_2 (2)+{1}/{2}\cdot {\rm log}_2 (2) = 1 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$

Dagegen gilt für die Entropien der beiden anderen Binärsignale:

$$H = \ \frac{3}{4}\cdot {\rm log}_2 (\frac{4}{3})+ \frac{1}{4}\cdot {\rm log}_2 (4) = \left( \frac{3}{4} + \frac{1}{4}\right)\cdot {\rm log}_2 (4) - \frac{3}{4}\cdot{\rm log}_2 (3) =$$
$$ \hspace{0.5cm} = \ 2 - \frac{3}{4}\cdot{\rm log}_2 (3) = 0.811 \,\,{\rm bit/Bin\ddot{a}rsymbol} \hspace{0.05cm}.$$

Daraus ergibt sich für die relative Redundanz dieser Signale:

$$r = \frac{H_{\rm max} - H}{H_{\rm max}}\hspace{0.15cm} \approx 18.9\%\hspace{0.05cm}.$$

(2)  Der quadratische Mittelwert ist unabhängig von $p$ gleich $m_{2a} = 1$:

$$m_{2a}={\rm E}[a_\nu^2] = p \cdot (+1)^2 + (1-p)\cdot (-1)^2 \hspace{0.15cm}\underline { = 1 \hspace{0.05cm}}.$$

(3)  Für den linearen Mittelwert erhält man

$$m_{a}={\rm E}[a_\nu] = p \cdot (+1) + (1-p)\cdot (-1) = 2 p -1 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm} p = 0.75\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0.50},\hspace{0.2cm} p = 0.50\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline {=0},\hspace{0.2cm} p = 0.25\text{:} \hspace{0.4cm} m_{a}\hspace{0.15cm}\underline { =-0.50 \hspace{0.05cm}}.$$

(4)  Mit den Ergebnissen aus (2) und (4) erhält man:

$$p = 0.75\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75},$$
$$ p = 0.50\text{:} \hspace{0.4cm} \sigma_{a}^2\hspace{0.15cm} \underline { =1.00 \hspace{0.05cm}},$$
$$ p = 0.25\text{:} \hspace{0.4cm} \sigma_{a}^2 \hspace{0.15cm}\underline {=0.75}.$$


AKF bei gleichwahrscheinlichen Symbolen

(5)  Richtig sind nur die beiden ersten Aussagen:

  • Für $p = 0.5$ gilt $\varphi_{a}(\lambda = 0) = 1$ und $\varphi_{a}(\lambda \neq 0) = 0$. Daraus folgt:
$$\varphi_s(\tau) = \frac{1}{T} \cdot \varphi^{^{\bullet}}_{gs}(\tau )\hspace{0.05cm}.$$
  • Damit ergeben sich sowohl beim NRZ– als auch beim RZ–Grundimpuls eine dreieckförmige AKF und ein ${\rm si}^{2}$–förmiges LDS.
  • Die Fläche unter dem LDS ist beim RZ–Impuls um den Faktor $T_{\rm S}/T$ kleiner als beim NRZ–Impuls, da sich auch die AKF–Werte bei $\tau = 0$ um diesen Faktor unterscheiden.
  • Das LDS ist in beiden Fällen kontinuierlich, da die AKF keinen Gleichanteil und keine periodischen Anteile beinhaltet.


AKF bei ungleichen Symbolwahrscheinlichkeiten

(6)  Richtig sind alle Aussagen mit Ausnahme der dritten:

  • Für $p = 0.75$ setzt sich die AKF $\varphi_{s}(\tau)$ aus unendlich vielen Dreieckfunktionen zusammen, die mit Ausnahme des mittleren Dreiecks um $\tau = 0$ alle die gleiche Höhe $s_{0}^{2}/4$ aufweisen.
  • Entsprechend der Skizze kann man alle diese Dreieckfunktionen zu einem Gleichanteil der Höhe $m_{a}^{2} \cdot s_{0}^{2} = s_{0}^{2}/4$ und einem einzigen Dreieck um $\tau = 0$ mit der Höhe $\sigma_{a}^{2} \cdot s_{0}^{2} = 3/4 · s_{0}^{2}$ zusammenfassen.
  • Im LDS führt dies zu einem kontinuierlichen, ${\rm si}^{2}$–förmigem Anteil und zu einer Diracfunktion bei $f = 0$. Das Gewicht dieses Diracs ist $s_{0}^{2}/4$.
  • Für $p = 0.25$ ergibt sich die gleiche AKF wie mit $p = 0.75$, da sowohl der quadratische Mittelwert $m_{2a} = 1$ als auch $m_{a}^{2} = 0.25$ übereinstimmen. Somit stimmen natürlich auch die Leistungsdichtespektren überein.


AKF bei RZ-Rechteckimpulsen

(7)  Beide Lösungsvorschläge sind richtig:

  • Mit dem RZ–Tastverhältnis $T_{\rm S}/T = 0.5$ ergibt sich die skizzierte AKF, die auch durch eine periodische Dreieckfunktion der Höhe $s_{0}^{2}/8$ (mit roter Füllung) und einem einzigen Dreieckimpuls der Höhe $3/8 \cdot s_{0}^{2}$ (grün gefüllt) dargestellt werden kann.
  • Dieser nichtperiodische Anteil führt zu einem kontinuierlichen, ${\rm si}^{2}$–förmigen LDS mit Nullstellen bei Vielfachen von $2/T$.
  • Das periodische Dreiecksignal bewirkt Diracfunktionen bei Vielfachen von $1/T$.
  • Aufgrund der Antimetrie des periodischen Anteils besitzen die Diracfunktionen bei Vielfachen von $2/T$ jeweils das Gewicht $0$.
  • Die Gewichte der Diracfunktionen im Abstand $1/T$ sind proportional zum kontinuierlichen LDS–Anteil.