Exercise 3.9: Conditional Mutual Information

From LNTwww
Revision as of 08:22, 10 October 2018 by Guenter (talk | contribs)

Ergebnis $W$ als Funktion
von $X$, $Y$, $Z$

Wir gehen von den statistisch unabhängigen Zufallsgrößen $X$, $Y$ und $Z$ mit den folgenden Eigenschaften aus :

$$X \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} Y \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} Z \in \{1, 2 \} \hspace{0.05cm},\hspace{0.35cm} P_X(X) = P_Y(Y) = \big [ 1/2, \ 1/2 \big ]\hspace{0.05cm},\hspace{0.35cm}P_Z(Z) = \big [ p, \ 1-p \big ].$$

Aus $X$, $Y$ und $Z$ bilden wir die neue Zufallsgröße $W = (X+Y) \cdot Z$.

  • Es ist offensichtlich, dass es zwischen $X$ und $W$ statistische Abhängigkeiten gibt   ⇒   Transinformation $I(X; W) ≠ 0$.
  • Außerdem wird auch $I(Y; W) ≠ 0$  sowie  $I(Z; W) ≠ 0$ gelten, worauf in dieser Aufgabe jedoch nicht näher eingegangen wird.


In dieser Aufgabe werden drei verschiedene Transinformationsdefinitionen verwendet:

  • die herkömmliche Transinformation zwischen $X$ und $W$:
$$I(X;W) = H(X) - H(X|\hspace{0.05cm}W) \hspace{0.05cm},$$
  • die bedingte Transinformation zwischen $X$ und $W$ bei gegebenem Festwert $Z = z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z = z) - H(X|\hspace{0.05cm}W ,\hspace{0.05cm} Z = z) \hspace{0.05cm},$$
  • die bedingte Transinformation zwischen $X$ und $W$ bei gegebener Zufallsgröße $Z$:
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = H(X\hspace{0.05cm}|\hspace{0.05cm} Z ) - H(X|\hspace{0.05cm}W \hspace{0.05cm} Z ) \hspace{0.05cm}.$$

Der Zusammenhang zwischen den beiden letzten Definitionen lautet:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z ) = \sum_{z \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{Z})} \hspace{-0.2cm} P_Z(z) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = z)\hspace{0.05cm}.$$


Hinweise:



Fragebogen

1

Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 1$ gilt?

$ I(X; W | Z = 1) \ = \ $

$\ \rm bit$

2

Wie groß ist die Transinformation zwischen $X$ und $W$, falls stets $Z = 2$ gilt?

$ I(X; W | Z = 2) \ = \ $

$\ \rm bit$

3

Nun gelte  $p = {\rm Pr}(Z = 1)$. Wie groß ist die bedingte Transinformation zwischen $X$ und $W$, falls $z \in Z = \{1, 2\}$ bekannt ist?

$p = 1/2\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$
$p = 3/4\text{:} \ \ \ I(X; W | Z) \ = \ $

$\ \rm bit$

4

Wie groß ist die unkonditionierte Transinformation für $p = 1/2$?

$I(X; W) \ = \ $

$\ \rm bit$


Musterlösung

2D-Wahrscheinlichkeitsfunktionen für $Z = 1$

(1)  Die erste Grafik gilt für $Z = 1$   ⇒   $W = X + Y$. Unter den Voraussetzungen $P_X(X) = \big [1/2, \ 1/2 \big]$ sowie $P_Y(Y) = \big [1/2, \ 1/2 \big]$ ergeben sich somit die Verbundwahrscheinlichkeiten $P_{ XW|Z=1 }(X, W)$ entsprechend der rechten Grafik (graue Hinterlegung).

Damit gilt für die Transinformation unter der festen Bedingung $Z = 1$:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{-0.05cm} = \hspace{-1.1cm}\sum_{(x,w) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (P_{XW}\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1)} \hspace{-1.1cm} P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) \cdot {\rm log}_2 \hspace{0.1cm} \frac{P_{XW\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (x,w) }{P_X(x) \cdot P_{W\hspace{0.01cm}|\hspace{0.01cm} Z\hspace{-0.03cm} =\hspace{-0.03cm} 1} (w) }$$
$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) = 2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/4} + 2 \cdot \frac{1}{4} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/4}{1/2 \cdot 1/2} $$
$$\Rightarrow \hspace{0.3cm} I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$
  • Der erste Term fasst die beiden horizontal schraffierten Felder in obiger Grafik zusammen, der zweite Term die vertikal schraffierten Felder.
  • Letztere liefern wegen $\log_2 (1) = 0$  keinen Beitrag.


2D-Wahrscheinlichkeitsfunktionen für $Z = 2$

(2)  Für $Z = 2$ gilt zwar $W = \{4, 6, 8\}$, aber hinsichtlich der Wahrscheinlichkeitsfunktionen ändert sich gegenüber der Teilaufgabe (1) nichts.

Demzufolge erhält man auch die gleiche bedingte Transinformation:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2) = I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) \hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$


(3)  Die Gleichung lautet für $Z = \{1, 2\}$ mit ${\rm Pr}(Z = 1) =p$  und  ${\rm Pr}(Z = 2) =1-p$:

$$I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) = p \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 1) + (1-p) \cdot I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z = 2)\hspace{0.15cm} \underline {=0.5\,{\rm (bit)}} \hspace{0.05cm}.$$
  • Es ist berücksichtigt, dass entsprechend den Teilaufgaben (1) und (2) die bedingten Transinformationen für gegebenes $Z = 1$ und gegebenes $Z = 2$ gleich sind.
  • Damit ist $I(X; W|Z)$, also unter der Bedingung einer stochastischen Zufallsgröße $Z = \{1, 2\}$ mit $P_Z(Z) = \big [p, \ 1 – p\big ]$, unabhängig von  $p$.
  • Das Ergebnis gilt insbesondere auch für  $\underline{p = 1/2}$ und  $\underline{p = 3/4}$.


Zur Berechnung der Verbundwahrscheinlichkeit für $XW$

(4)  Die Verbundwahrscheinlichkeit $P_{ XW }$ hängt von den $Z$–Wahrscheinlichkeiten  $p$ und $1 – p$ ab.

  • Für $Pr(Z = 1) = Pr(Z = 2) = 1/2$ ergibt sich das rechts skizzierte Schema.
  • Zur Transinformation tragen nur wieder die beiden horizontal schraffierten Felder bei:
$$ I(X;W) = 2 \cdot \frac{1}{8} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1/8}{1/2 \cdot 1/8} \hspace{0.15cm} \underline {=0.25\,{\rm (bit)}} \hspace{0.35cm} < \hspace{0.35cm} I(X;W \hspace{0.05cm}|\hspace{0.05cm} Z) \hspace{0.05cm}.$$

Das Ergebnis $I(X; W|Z) > I(X; W)$ trifft für dieses Beispiel, aber auch für viele andere Anwendungen zu:

  • Kenne ich $Z$, so weiß ich mehr über die 2D–Zufallsgröße $XW$ als ohne diese Kenntnis.
  • Man darf dieses Ergebnis aber nicht verallgemeinern.
  • Manchmal gilt tatsächlich $I(X; W) > I(X; W|Z)$, so wie im Beispiel 3 im Theorieteil.