Entropie und Näherungen binärer Nachrichtenquellen
From LNTwww
Revision as of 09:41, 5 December 2018 by Guenter (talk | contribs) (Guenter verschob die Seite Entropien von binären Nachrichtenquellen (neues Applet) nach Entropien von binären Nachrichtenquellen)
Contents
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung der Gaußschen Fehlerfunktionen ${\rm Q}(x)$ und $1/2\cdot {\rm erfc}(x)$, die für die Fehlerwahrscheinlichkeitsberechnung von großer Bedeutung sind.
- Sowohl die Abszisse als auch der Funktionswert kann entweder linear oder logarithmisch dargestellt werden.
- Für beide Funktionen wird jeweils eine obere Schranke (englisch: Upper Bound ) und eine untere Schranke (englisch: Lower Bound) angegeben.
Theoretischer Hintergrund
Bei der Untersuchung digitaler Übertragungssysteme muss oft die Wahrscheinlichkeit bestimmt werden, dass eine (mittelwertfreie) gaußverteilte Zufallsgröße $x$ mit der Varianz $σ^2$ einen vorgegebenen Wert $x_0$ überschreitet. Für diese Wahrscheinlichkeit gilt:
- $${\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).$$
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2007 von Thomas Großer im Rahmen seiner Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2018 wurde das Programm von Marwen Ben Ammar und Xiaohan Liu (Bachelorarbeit, Betreuer: Tasnád Kernetzky ) auf „HTML5” umgesetzt und neu gestaltet.