Exercise 1.1: Dual Slope Loss Model

From LNTwww
Revision as of 15:57, 25 March 2020 by Javier (talk | contribs)

Dual-Slope-Pfadverlustmodell

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):

  • For  ddBP  and the exponent is  γ0 we have:

VP(d)=V0+γ010dBlg(d/d0).

  • For  d>dBP  we must apply the path loss exponent  γ1  where  γ1>γ0  applies:

VP(d)=VBP+γ110dBlg(d/dBP).

In these equations, the variables are:

  • V0  is the path loss (in dB) at  d0  (normalization distance).
  • VBP  is the path loss (in dB) at  d=dBP  ("Breakpoint").


The graph applies to the model parameters d0=1m,dBP=100m,V0=10dB,γ0=2,γ1=4VBP=50dB.

In the questions, this piece-wise defined profile is called  A.

The second curve is the profile  B  given by the following equation: VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(1+d/dBP).

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  d  according to the following equation: P_{\rm E}(d) = \frac{P_{\rm S} \cdot G_{\rm S} \cdot G_{\rm E} /V_{\rm zus}}}{K_{\rm P}(d)}  \hspace{0.05cm},\hspace{0.2cm}K_{\rm P}(d) = 10^{V_{\rm P}(d)/10}   \hspace{0.05cm}.

Here, all parameters are in natural units (not in dB). The transmit power is assumed to be  PS=5 W . The other quantities have the following meanings and values:

  • 10lg GS=17 dB  (gain of the transmit antenna),
  • 10lg GE=3  dB  (gain of receiving antenna – so actually a loss),
  • 10lg Vzus=4  dB  (loss through feeds).




Notes:

VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)

define, then profile  A  and profile  B  for  ddBP  would be identical
  • In this case, however, the lower area would contain  (d<dBP)  the profile  B  would be above profile  A , thus suggesting clearly too good conditions. For example,   d=d0=1  m  with the given numerical values gives a result that is   40  dB  too good:

VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)=10dB+210dBlg(1/100)=30dB.



=Questionnaire

<quiz display=simple> {How large is the path loss (in  dB)  to  d=100 m  according to profile  A? |type="{}"} VP(d=100 m) =  { 50 3% }  dB

{How large is the path loss (in  dB)  to  d=100 m  according to profile  B? |type="{}"} VP(d=100 m) =  { 56 3% }  dB

{What is the receive power after  100  m  with both profiles? |type="{}"{} Profile A:PE(d=100 m) =  { 0.5 3% }   mW Profile B:PE(d=100 m) =  { 0.125 3% }   mW

{How big is the deviation  ΔVP  between profile  A  and  B  at  d=50 m? |type="{}"} ΔVP(d=50 m) =  { 3.5 3% }  dB

{How big is the deviation  ΔVP  between profile  A  and  B  at  d=200 m? |type="{}"} ΔVP(d=200 m) =  { 3.5 3% }  dB </quiz

sample solution

ML head '(1)  You can see directly from the graphic that the profile (A) with the two linear sections at „Breakpoint” (d=100 m) gives the following result: VP(d=100m)=50dB_.


(2)  With the profile (B) on the other hand, using V0=10 dB, γ0=2 and γ1=4: VP(d=100m)=10dB+20dBlg(100)+20dBlg(2)56dB_.


(3)  The antenna gains from the transmitter (+17  dB) and receiver (3 dB) and the internal losses of the base station (+4 dB) can be combined to 10lgG=10lgGS+10lgGE10lgVzus=17dB3dB4dB=10dBG=10.

  • For the profile '(A) the following path loss occurred:

VP(d=100m)=50dBKP=105.

This gives you \ \ \rm mforthereceivingpowerafterd = 100:

PE(d=100m)=PSGKP=510105=0.5mW_.

  • For profile '(B) the receiving power is about 4 less:
PE(d=100m)=5W10105.65W104105=0.125mW_.


(4)  Below the breakpoint (d<100 m) the deviation is determined by the last summand of profile (B): δVP(d=50m)=(γ1γ0)10dBlg(1+d/dBP)=(42)10dBlg(1.5)3.5dB_.


'(5)  Here the profile (A) with VBP=50 dB: VP(d=200m)=50dB+410dBlg(2)62dB.

  • On the other hand, the profile '(B) leads to the result:

VP(d=200m)=50dB+20dBlg(200)+20dBlg(3)=10dB+46dB+9.5dB65.5dB

δVP(d=200m)=65.5dB62dB3.5dB_.

  • You can see that ΔVP is almost symmetrical to d=dBP if you plot the distance d logarithmically as in the given graph.