Exercise 1.1: Dual Slope Loss Model
To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):
- For d≤dBP and the exponent γ0 we have:
VP(d)=V0+γ0⋅10dB⋅lg(d/d0).
- For d>dBP we must apply the path loss exponent γ1 where γ1>γ0 :
VP(d)=VBP+γ1⋅10dB⋅lg(d/dBP).
In these equations, the variables are:
- V0 is the path loss (in dB) at d0 (normalization distance).
- VBP is the path loss (in dB) at d=dBP ("Breakpoint").
The graph applies to the model parameters
d0=1m,dBP=100m,V0=10dB,γ0=2,γ1=4⇒VBP=50dB.
In the questions, this piece-wise defined profile is called A.
The second curve is the profile B given by the following equation: VP(d)=V0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(1+d/dBP).
With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance d according to the following equation:
- PE(d)=PS⋅GS⋅GE/VzusKP(d),KP(d)=10VP(d)/10.
Here, all parameters are in natural units (not in dB). The transmit power is assumed to be PS=5 W . The other quantities have the following meanings and values:
- 10⋅lg GS=17 dB (gain of the transmit antenna),
- 10⋅lg GE=−3 dB (gain of receiving antenna – so actually a loss),
- 10⋅lg Vzus=4 dB (loss through feeds).
Notes:
- This task belongs to the chapter Distanzabhängige Dämpfung und Abschattung.
- If the profile B were
VP(d)=V0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(d/dBP)
- then profile A and profile B for d≥dBP would be identical
- In this case, however, profile B would be above profile A for (d<dBP) , suggesting clearly too good conditions. For example, d=d0=1 m with the given numerical values gives a result that is 40 dB too good:
VP(d)=V0+γ0⋅10dB⋅lg(d/d0)+(γ1−γ0)⋅10dB⋅lg(d/dBP)=10dB+2⋅10dB⋅lg(1/100)=−30dB.
Questionnaire
Sample solution
(2) With the profile (B) on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4: V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.
(3) The antenna gains from the transmitter (+17 \ \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.
- For the profile '(A) the following path loss occurred:
V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.
- This gives you \ \ \rm m for the receiving power after d = 100:
P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.
- For profile '(B) the receiving power is about 4 less:
- P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.
(4) Below the breakpoint (d < 100 \ \rm m) the deviation is determined by the last summand of profile (B): {\rm \delta}V_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
'(5) Here the profile (A) with V_{\rm BP} = 50 \ \rm dB: V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.
- On the other hand, the profile '(B) leads to the result:
V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}} \Rightarrow \hspace{0.3cm} {\rm \delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.
- You can see that \Delta V_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.