Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.1: Dual Slope Loss Model

From LNTwww
Revision as of 16:07, 25 March 2020 by Javier (talk | contribs)

Dual-Slope-Pfadverlustmodell

To simulate path loss in an urban environment, the asymptotic dual-slope model is often used, which is shown as a red curve in the diagram. This simple model is characterized by two linear sections separated by the so-called breakpoint (BP):

  • For  ddBP  and the exponent   γ0 we have:

VP(d)=V0+γ010dBlg(d/d0).

  • For  d>dBP  we must apply the path loss exponent  γ1  where  γ1>γ0 :

VP(d)=VBP+γ110dBlg(d/dBP).

In these equations, the variables are:

  • V0  is the path loss (in dB) at  d0  (normalization distance).
  • VBP  is the path loss (in dB) at  d=dBP  ("Breakpoint").


The graph applies to the model parameters d0=1m,dBP=100m,V0=10dB,γ0=2,γ1=4VBP=50dB.

In the questions, this piece-wise defined profile is called  A.

The second curve is the profile  B  given by the following equation: VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(1+d/dBP).

With this dual model, the entire distance course can be written in closed form, and the received power depends on the distance  d  according to the following equation:

PE(d)=PSGSGE/VzusKP(d),KP(d)=10VP(d)/10.

Here, all parameters are in natural units (not in dB). The transmit power is assumed to be  PS=5 W . The other quantities have the following meanings and values:

  • 10lg GS=17 dB  (gain of the transmit antenna),
  • 10lg GE=3  dB  (gain of receiving antenna – so actually a loss),
  • 10lg Vzus=4  dB  (loss through feeds).




Notes:

VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)

then profile  A  and profile  B  for  ddBP  would be identical
  • In this case, however, profile  B  would be above profile  A  for   (d<dBP)  , suggesting clearly too good conditions. For example,   d=d0=1  m  with the given numerical values gives a result that is   40  dB  too good:

VP(d)=V0+γ010dBlg(d/d0)+(γ1γ0)10dBlg(d/dBP)=10dB+210dBlg(1/100)=30dB.



Questionnaire

1

How large is the path loss (in  dB)  after  d=100 m  according to profile  A?

VP(d=100 m) = 

 dB

2

How large is the path loss (in  dB)  after  d=100 m  according to profile  B?

VP(d=100 m) = 

 dB

3

What is the receive power after  100  m  with both profiles?

Profile A:PE(d=100 m) = 

  mW
Profile B:PE(d=100 m) = 

  mW

4

How big is the deviation  ΔV_{\rm P}  between profile  \rm A  and  \rm B  at  d = 50 \ \rm m?

ΔV_{\rm P}(d = 50 \ \rm m) \ = \

\ \rm dB

5

How big is the deviation  ΔV_{\rm P}  between profile  \rm A  and  \rm B  at  d = 200 \ \rm m?

ΔV_{\rm P}(d = 200 \ \rm m)\ = \

\ \rm dB


Sample solution

'(1)  You can see directly from the graphic that the profile (A) with the two linear sections at „Breakpoint” (d = 100 \ \rm m) gives the following result: V_{\rm P}(d = 100\,{\rm m})\hspace{0.15cm} \underline{= 50\,{\rm dB}} \hspace{0.05cm}.


(2)  With the profile (B) on the other hand, using V_0 = 10 \ \rm dB, \gamma_0 = 2 and \gamma_1 = 4: V_{\rm P}(d = 100\,{\rm m}) = 10\,{\rm dB} + 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(100)+ 20\,{\rm dB}\cdot {\rm lg} \hspace{0.1cm}(2) \hspace{0.15cm} \underline{\approx 56\,{\rm dB}} \hspace{0.05cm}.


(3)  The antenna gains from the transmitter (+17 \ \ \rm dB) and receiver (-3 \ \rm dB) and the internal losses of the base station (+4 \ \rm dB) can be combined to 10 \cdot {\rm lg}\hspace{0.1cm} G = 10 \cdot {\rm lg}\hspace{0.1cm} G_{\rm S} + 10 \cdot {\rm lg} \hspace{0.1cm} G_{\rm E} - 10 \cdot {\rm lg}\hspace{0.1cm} V_{\rm zus} = 17\,{\rm dB} -3\,{\rm dB} - 4\,{\rm dB} = 10\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {G = 10} \hspace{0.05cm}.

  • For the profile '(A) the following path loss occurred:

V_{\rm P}(d = 100\,{\rm m})\hspace{0.05cm} {= 50\,{\rm dB}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_{\rm P} = 10^5 \hspace{0.05cm}.

This gives you \ \ \rm m for the receiving power after d = 100:

P_{\rm E}(d = 100\,{\rm m}) = \frac{P_{\rm S} \cdot G}{K_{\rm P}} = \frac{5\,{\,} \cdot 10}{10^5}\hspace{0.15cm} \underline{= 0.5\,{\rm mW}} \hspace{0.05cm}.

  • For profile '(B) the receiving power is about 4 less:
P_{\rm E}(d = 100\,{\rm m}) = \frac{5\,{\rm W} \cdot 10}{10^{5.6}}\approx \frac{5\,{\rm W} \cdot 10}{4 \cdot 10^{5}}\hspace{0.15cm} \underline{= 0.125\,{\rm mW}} \hspace{0.05cm}.


(4)  Below the breakpoint (d < 100 \ \rm m) the deviation is determined by the last summand of profile (B): {\rm \delta}V_{\rm P}(d = 50\,{\rm m}) = (\gamma_1 - \gamma_0) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} \left (1 + {d}/{d_{\rm BP}} \right )= (4-2) \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (1.5)\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.


'(5)  Here the profile (A) with V_{\rm BP} = 50 \ \rm dB: V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 4 \cdot 10\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (2)\hspace{0.15cm} {\approx 62\,{\rm dB}} \hspace{0.05cm}.

  • On the other hand, the profile '(B) leads to the result:

V_{\rm P}(d = 200\,{\rm m}) = 50\,{\rm dB} + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (200) + 20\,{\rm dB} \cdot {\rm lg} \hspace{0.1cm} (3) = 10\,{\rm dB} + 46\,{\rm dB} + 9.5\,{\rm dB} \hspace{0.15cm} {\approx 65.5\,{\rm dB}} \Rightarrow \hspace{0.3cm} {\rm \delta}V_{\rm P}(d = 200\,{\rm m}) = 65.5\,{\rm dB} - 62\,{\rm dB}\hspace{0.15cm} \underline{\approx 3.5\,{\rm dB}} \hspace{0.05cm}.

  • You can see that \Delta V_{\rm P} is almost symmetrical to d = d_{\rm BP} if you plot the distance d logarithmically as in the given graph.